
Recognizing Groceries in situ Using in vitro Training Data

Michele Merler

Telecommunications Engineering

University of Trento, Italy

michele.merler@studenti.unitn.it

Carolina Galleguillos

Computer Science & Engineering

University of California, San Diego

cgallegu@cs.ucsd.edu

Serge Belongie

Computer Science & Engineering

University of California, San Diego

sjb@cs.ucsd.edu

Abstract

The problem of using pictures of objects captured un-

der ideal imaging conditions (here referred to as in vitro)

to recognize objects in natural environments (in situ) is an

emerging area of interest in computer vision and pattern

recognition. Examples of tasks in this vein include assis-

tive vision systems for the blind and object recognition for

mobile robots; the proliferation of image databases on the

web is bound to lead to more examples in the near future.

Despite its importance, there is still a need for a freely

available database to facilitate study of this kind of train-

ing/testing dichotomy. In this work one of our contribu-

tions is a new multimedia database of 120 grocery products,

GroZi-120. For every product, two different recordings are

available: in vitro images extracted from the web, and in

situ images extracted from camcorder video collected inside

a grocery store. As an additional contribution, we present

the results of applying three commonly used object recogni-

tion/detection algorithms (color histogram matching, SIFT

matching, and boosted Haar-like features) to the dataset.

Finally, we analyze the successes and failures of these algo-

rithms against product type and imaging conditions, both

in terms of recognition rate and localization accuracy, in

order to suggest ways forward for further research in this

domain.

1. Introduction

Object detection and recognition are important tasks in

computer vision. Nearly all of the algorithms that address

these problems demand large amounts of labeled training

examples for each object. Moreover, it is generally neces-

sary that the training examples be acquired under environ-

mental conditions (illumination, pose, etc.) that are repre-

sentative of what will be observed in the testing data.

In many real-world applications, however, having access

to training data for which the appearance is drawn from the

same distribution as that of the testing data is not practi-

cal. Examples of such applications include assistive vision

technology for the blind and object recognition for mobile

robots. Consider for example the Semantic Robot Vision

Challenge (SRVC)1, a new research competition designed

to push the state-of-the-art in image understanding and au-

tomatic acquisition of knowledge from large unstructured

databases of images (such as those generally found on the

web). Central to the challenge is the problem of training a

“laptop-on-wheels” object recognizer using only a textual

list of objects (provided shortly before the competition) and

access to an internet image search engine. In the case of our

application of interest, we seek to design a portable vision

system for helping blind people find groceries in a super-

market, with a starting point again consisting of a textual

list – in this case a shopping list – and access to publicly

available grocery images on the internet.

The web contains an immense collection of structured

and unstructured image databases and offers the potential to

generate useful models for image recognition and localiza-

tion. In order to explore this potential in at least one appli-

cation domain, we built a multimedia database consisting of

120 different grocery items easily retrievable from the web.

For every product, two different recordings are available: in

vitro images extracted from the web (captured under ideal

imaging conditions), and in situ images extracted from cam-

corder video collected inside a grocery store. We refer to a

grocery product with its corresponding UPC code as an ob-

ject. Each product has several different image examples that

were extracted from the web and from video captures. The

intent of this dataset is to serve as a seed upon which the

set of images can grow dynamically by user interaction in

the future. In particular, methods such as [5] could be used

to discover and label large amounts of in situ object exam-

ples in photos that currently lack textual annotation using

in vitro training data from online resources such as Amazon

Groceries.

Our goal in this paper is to provide a highly varied real

world multimedia database for studying object recognition

and detection with the above-described distinction between

training and testing data, as well as baseline performance

1http://www.cs.cmu.edu/ ∼prybski/SRVC/
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of several approaches used to solve object localization and

recognition. In Section 2 we first review the state of the

art object detection and recognition algorithms used in our

baseline study, and then we discuss existing databases of

common use in the computer vision community. In Section

3 we introduce the GroZi-120 database, which is publicly

available, with a detailed description of what it contains and

how it was created. Section 4 presents the features used

and the different models for localization and recognition.

Section 5 shows the results on the database and finally in

Section 6 we discuss the results and propose ideas for future

work.

2. Related work

2.1. Detection/recognition algorithms

Color histogram matching is one of the first algorithms

ever applied to detect and recognize objects in images and

videos. Swain and Ballard’s early work on color object

recognition by means of fast matching color histograms by

intersecting them [20] opened the way to many different ap-

proaches with a common ground. Computational complex-

ity, which has always been one major bottleneck of the his-

togram extraction and comparison based search tasks, has

recently been overcome with the introduction of the inte-

gral histogram by Fatih Porikli [19]. On the other hand, the

choice of which colorspace or chrominance plane to use is

still an open issue [14].

In addition to color features, one can employ methods

based on on shape [4] and/or gray-scale object descriptors.

There are two distinct problems linked to such approaches:

interest point detection and description of the distribution

of smaller-scale features within the interest point neighbor-

hood. The most commonly used interest point detector is

probably the Harris corner detector [12], while for the sec-

ond problem, David Lowe’s SIFT [16] descriptor has been

shown to outperform the others, as it is invariant to scale and

rotation transformations. This property can be explained by

the fact that it captures a substantial amount of information

about the spatial intensity patterns, while at the same time

being robust to small deformations or localization errors.

In the framework of object detection, a major contribu-

tion has been offered by Viola and Jones [21], who intro-

duced a fast and reliable classifier. They suggested using

a cascade of classifiers, each of which is a combination of

a subset of weak learners selected via Adaboost [8]. The

weak learners use Haar-like features, which are responses

of filters computed extremely quickly by employing inte-

gral images.

2.2. Computer vision databases

Over the years many datasets have been introduced in the

computer vision community, in order to provide a mean of

evaluation for the different algorithms developed. Here we

present a sample of recent ones, summarizing their charac-

teristics. In this way we will make evident the innovative

contribution offered by the GroZi-120 dataset, which we

will introduce in Section 3.

The Pascal Object Recognition Database Collection [1]

consists of data gathered for an object recognition in natu-

ral scenes challenge that took place in 2005 and 2006. In

its final version, the collection contains 5,304 images, pro-

vided by Microsoft Research Cambridge and collected from

the photo-sharing web-site Flickr, of 10 object classes. All

images are annotated with instances of all the classes, for a

total of 9,507 labelled objects. The set presents variability

of scale, pose, background clutter and degree of occlusion

for every object.

Caltech 101, now expanded into Caltech 256 [7], con-

tains 30607 images, grouped into 256 object classes, with

a mean of 119 images per class. It also includes a special

category for clutter and background. It is widely used for

object recognition but is not recommended for object local-

ization.

Another example is SOIL-47 [13], a database of house-

hold objects, many of the same shape, viewed over a sig-

nificant portion of the viewing sphere. The images show

mainly multicolored objects, many of them consisting of

planar surfaces (boxes) and with generally complex color

structure. The database contains 24 objects with approxi-

mately planar surfaces and 22 complex scenes. Both objects

and scenes are presented against a black background, in ab-

sence of clutter. Three different kinds of appearance varia-

tion are included: 3D viewpoint, illumination intensity and

occlusion/distractors. A database like SOIL-47 may repre-

sent an extremely rich in vitro training set for the problem

we investigate, but it lacks the in situ counterpart that is

needed for testing.

A more recent computer vision database is the Amster-

dam Library of Object Images (ALOI) [9], a collection of

one-thousand small objects. The creators of the dataset sys-

tematically varied viewing angle, illumination angle, and il-

lumination color for each object, and additionally captured

wide-baseline stereo images. It includes over a hundred im-

ages per object, yielding a total of 110,250 images. Again,

no clutter or complex background are present.

Finally, the ETH-80 [15] database consists of 80 objects

from 8 chosen categories captured in high-resolution color

images, with segmentation masks provided for every image.

Each object is represented by 41 images from viewpoints

spaced equally over the upper viewing hemisphere.

Apart from the Caltech 256 and the PASCAL dataset, all

the reported databases present a uniform one-color back-

ground, so objects are easily segmentable from the back-

ground (which is usually black and presents no clutter).

Moreover, in almost all cases no occlusion is present and



the sizes and position of objects inside the images are nor-

malized, as pointed out in [18]. In contrast, we propose a

dataset that contains images that present a significant dif-

ference in quality (between training and testing) and where

individual objects have both cluttered and uniform back-

ground. Therefore it can be used for object localization

as well as recognition approaches, and it can be used for

training and testing purposes, either with images or video

captures.

3. GroZi-120 database

The GroZi-1202 is a multimedia database of 120 gro-

cery products. It was created in order to address the prob-

lem of learning using training data that differs in quality

from the testing data for object recognition and localiza-

tion tasks. The objects belonging to it vary in color, size,

opacity, shape and rigidity, as can be seen in Figure 2. The

dataset introduces variabilities not systematically offered in

previous available collections. In fact, many of our testing

images contain multiple instances of the same object, which

may present partial occlusion and truncation, as well as size

and orientation variations. Furthermore, the location of the

product varies considerably from image to image and differ-

ent objects are found in the same frames. All these proper-

ties are exemplified in Figure 4. Every product has two dif-

ferent representations in the database: one captured in vitro

and another in situ. The in vitro images are isolated and

captured under ideal imaging conditions (e.g.,stock photog-

raphy studio or a lab) and they can be found on the web,

more specifically in grocery web stores such as Froogle3.

In order to obtain in vitro representations we queried the

in vitro in situ

Total number of images 676 11194

Average number of images per object 5.6 93.3

Min. number of images per object 2 14

Max. number of images per object 14 814

Table 1. General statistics of in situ and in vitro images for the

GroZi-120 database. The reduced number of in vitro samples

arises from the difficulty to retrieve unique instances of a given

product.

web using a list of approximately 4000 UPC codes associ-

ated with the products of a local grocery store. A Perl script

was generated to automatically crawl the web looking for

images of the products by using the UPC code. In case the

system did not respond positively to a query, a textual de-

scription of the product was obtained from the UPC online

database4, and the query was performed again with the new

keywords. A manual selection of the downloaded instances

2http://grozi.calit2.net
3http://www.froogle.com
4http://www.upcdatabase.com

was executed in order to eliminate duplicates and images

representing products different from the desired one. In or-

der to make the in vitro images usable as a training set for

any algorithm, we set their background to transparent and

we obtained a binary mask in order to extract only the use-

ful information out of every image, as shown in Figure 5

(a).

Figure 1. Sample of in vitro images of multiple views for a product.

Figure 2. Sample of in vitro images for different products.

Figure 3. Sample of in situ images for the above products.

Therefore the in vitro images become easy to analyze

and at the same time, coming from different online vendors

and stock photo suppliers, they include a variety of illumi-

nations, sizes and poses. Figure 1 shows the different views

of a particular product represented by in vitro images. In

contrast, in situ representations come from natural environ-

ments (real world). Figure 3 shows the in situ representa-

tions of the objects in Figure 2. We went to the grocery store

that provided us the UPC list (a campus convenience store),

and shot 29 videos on the same day at 30 fps, encoded as

Divx 5.2.1 with a bitrate of 2000 kbps using a VGA resolu-

tion MiniDV camcorder, for a total of around 30 minutes of

footage. Such videos include every product present in the in

vitro part of the dataset. These images were selected every



5 frames and were stored together with their location in the

video (video number, frame number, rectangle coordinates),

as shown in Figure 5 (b). These images present variations

in scale, illumination, reflectance, color, pose and rotation,

while the video frames provide a cluttered background. One

of the benefits of this data is that it represents the typical

low quality of a real world image. Hence, different algo-

rithms for object recognition (where in vitro images can be

compared to in situ images) and object localization (search

for products in videos) can be tested on this dataset. Ta-

ble 1 reports statistics about the dataset. Grozi-120 consti-

tutes a database of mixed multimedia content, with images

and videos representing the same objects under different vi-

sual conditions, together with their text annotations. The

creation of such a dataset involved different multimedia re-

sources, spanning from the web to digital camcorders.

4. Object detection and recognition algorithms

In order to provide a baseline characterization of the

level of difficulty inherent to this problem domain, we tested

a selection of popular object detection and recognition ap-

proaches and studied their performance on the GroZi-120

dataset. Below we describe the different features used and

the approaches implemented in detail.

4.1. Features and dissimilarity measures

Color Histogram: We first tested our database with

chrominance planes belonging to 3 different color spaces:

YCbCr, HSV and Lab. A preliminary study showed that

the ab plane from Lab provided the best results. We com-

puted histograms of 16 bins per channel, a and b, calculated

separately, for a total of 32 bins. Then we generated a his-

togram of the a and b channels for every in vitro image in

the dataset. Histograms belonging to the same product were

subsequently averaged, bin per bin, in order to obtain a final

template histogram representative of the object.

SIFT: We computed SIFT [16] keypoints for every in

vitro image in the data set in order to represent images us-

ing scale and rotation invariant descriptors. The keypoints

were computed using binaries provided by the UCLA Vi-

sion Lab5. Each grocery product was represented by a

“bag of keypoints” extracted from the in vitro images cor-

responding to a particular object. Therefore the calculated

keypoints correspond to the different views of the same ob-

ject without including background. The background pixels

were set to zero when the masks were applied to the images.

The product shape information is implicitly (albeit weakly)

captured by the descriptors, since they are computed on the

masked images.

Boosted Haar-like features: We used the implementa-

5http://vision.ucla.edu/ ∼vedaldi/code/sift/sift.html

tion in the Haar training utility of the Intel OpenCV library6.

Positive samples were synthetically created from the in vitro

images by applying randomly generated perspective distor-

tions, until 200 positive samples were obtained, including

the in vitro instances. The dimensions of such images were

obtained by computing the average ratio of all the masked

in vitro images and then resizing them to have a longest di-

mension of 50 pixels.

Figure 4. In situ video frame sample. There are 2 instances of

product 103, product 4 truncated, 2 instances of object 33 (one

almost completely occluded by the other), 1 sample of product 27

(rotated out of plane) and 1 instance of product 95.

a b

Figure 5. (a) Binary mask applied to web samples. (b) Product

image cropped from video frame and stored together with coordi-

nates.

4.2. Recognition

In our recognition study, in vitro images were used as

training data, while in situ images were used as test data.

In color histogram matching we computed color histograms

for every in situ image in the dataset. Then the distances

between the in vitro image template and in situ image his-

tograms were calculated, according to 3 different metrics:

Euclidean, χ2 and histogram intersection (L1 distance).

Once the distances were computed, we calculated the ROC

curves shown in Section 5 by integrating a bidimensional

histogram of the distances. We obtained the best perfor-

mance using color histogram intersection.

6 http://www.intel.com/technology/computing/opencv/



Recognition using SIFT proceeded similarly to the ap-

proach used for color histogram matching. For each product

we computed the bag of features obtained from its in vitro

images. Then we matched the features with the keypoints

of every in situ image in the dataset. The distances between

samples were represented by the number of matches be-

tween the in vitro and the in situ one. The ROC curves were

computed in the same manner as for the color histogram

matching.

With regard to training in Adaboost, the cascade was al-

lowed to be 14 stages deep, with a maximum false alarms

rate (FAR) of 0.5 per stage.The ROC curves were obtained

by computing the distances to the in situ images resized to

the dimensions of the training set of the particular product.

Such distances were computed for the classifier by taking

the weighted sums of the responses of the features selected

at every stage and finding their difference from the thresh-

olds of the stage. All the differences were then summed

together to obtain a unique value for the distance.

4.3. Localization

Localization experiments were conducted by trying to

identify the location of products present in video sequences,

using in vitro images as the training set. Testing was per-

formed for every product using 14 frames out of the videos

containing the product, with its locations manually identi-

fied as ground truth, and 100 frames from the same videos

not containing any of the objects in the dataset. We took

into account the possible presence of multiple instances of

the product in the same frame.

We used two different metrics to evaluate localization:

a yes/no rule from which we obtain true positives and false

positives rates, and a metric based on the average object area

recall and the average detected area precision as defined in

[17], that gives us the overall recall and overall precision

rates. The first is a frame-based metric where a yes is given

if the center of the detected box (meaning the best match)

lies within the ground truth region and a no otherwise, as

presented in [3]. In the second, the recall for an object

is defined by the authors as the proportion of its area that is

covered by the algorithm’s output boxes for every frame and

the overall recall is computed as the weighted average recall

of all frames. Precision of an output box is defined as the

proportion of its area that covers the ground truth objects

and overall precision is the weighted average precision of

all frames.

The color histogram matching approach relies on the in-

tegral histogram computation as in [19]. We compute the in

vitro template histogram in the same way as in recognition.

Then, we performed a frame by frame analysis first comput-

ing the integral histogram (for the a and b channels) of the

whole frame and then moving a window at 5 different scales

in raster scan order around the frame, computing the color

histograms of different regions. Then those histograms are

intersected with the in vitro template. If the distance is ac-

cepted by the system, it is stored to be later compared to all

the other best matches in the frame. Finally a maximum of

6 windows are kept, which correspond to the best scores.

The SIFT approach for object localization consisted first

in computing the bag of keypoints for every in vitro object

and for each frame as in recognition. Since the in vitro im-

age sizes are different, we normalized the coordinates of all

the keypoints. Then, we matched the keypoints against the

frame features as in [16]. In order to reduce the number

of outliers and locate the object we centered a circle in the

in vitro average image, with a diameter equal to the aver-

age image diagonal. Iterating over the matches we kept the

circle containing the maximum number of matches. Sub-

sequently we computed the centroid of the locations of the

corresponding matching features in the frame, and also their

average distance with respect to the centroid. Using the pre-

vious pair of matches, we found the ones inside a new circle

with a diameter equal to the average distance in the in vitro

and frame instances. If the number of frame matches found

is greater or equal than the in vitro ones found we consider

the object as detected, otherwise we use the matches that

were not taken into account in the first place and proceed in

the same way. If in both cases the condition is not satisfied,

we do not consider the object as detected. This approach

was performed for different circles so we could handle mul-

tiple instances of a product on a frame.

In the Adaboost based method, the classifier obtained

from the set of boosted Haar-like features during the train-

ing phase is used to decide whether a series of rectangles

analyzed at different scales within each frame contains the

product of interest. This process is performed by compar-

ing the responses of the filters selected for every stage of

the classifier during the training phase to thresholds also se-

lected during the training.

5. Experiments and Results

In this Section we present the results for recognition and

localization of the algorithms presented in the previous sec-

tions. For recognition, we chose 10 in vitro image samples

for every product for training, corresponding to the highest

number of SIFT keypoints, considering that a higher num-

ber of keypoints often means an image with lower blurri-

ness. Synthetic images were created when the original num-

ber of samples was less than 10. Subsequently we chose 10

in situ images per object for testing using the same criteria,

but not considering synthetic images. In Figure 6 we report

the average performances. It can be noticed how the over-

all best performing algorithm is SIFT, while the color his-

togram matching curve (CHM), after an initial flat behavior,

rapidly grows towards a 99 percent match rate. Finally, Ad-

aboost offers the worst performance. One of the reasons for



such a difference relies on the lack of a consistent number

of original samples for training, alleviated by the generation

of synthetic images, which do not offer effectively diverse

characteristics. SIFT and CHM, on the other hand, need

only very few samples to extract the necessary information

to perform recognition. Figures 7 and 8 present two inter-

esting cases. In the case of product 1, there is a clear dispar-

ity between the performances of the different algorithms.

While the SIFT performed well, probably due to the dis-

tinctiveness of the text and symbols on the product’s box,

the color histogram curve is affected by the predominance

of the white color, which is not particularly distinguishable

in the chrominance plane, and performs poorly since it is

based on a more global approach. On the other hand, in

Figure 8, CHM benefits from the multimodal histogram ob-

tained from a product presenting colors (yellow, orange and

green) very well distinguishable in the ab plane, while SIFT

and Haar-like features encounter a lack of distinctive feature

points on most of the product’s surface.
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Figure 6. Average ROC curves for all the Products.

In the case of localization we used 100 frames with no

instances of any product in the database to test the False

Positive rates. Table 2 shows the localization rates in per-

centages for the three different algorithms. We use a yes/no

rule to obtain true and false positives, based on whether the

center of the detected box lies or not within ground truth re-

gion. Recall is defined as the proportion of the ground truth

area covered by the detection boxes. Precision is defined as

the proportion of the detection boxes that covers the ground

truth area. The best and worst cases are selected consid-

ering the combination of all the 4 rates. Figure 9 presents

the best and worst cases. Looking the results we can no-

tice that SIFT outperforms the other methods, followed by

CHM. For Adaboost the discussion reported for recognition

still applies. The high values of the standard deviations in

the table show that the methods do not perform uniformly

over the set of products. This fact is due to the complex-

ity and variety of the dataset, which presents challenges of

variable difficulty for any algorithm. Furthermore from the

experiments emerges a discrepancy between the efficacy of

the three methods in recognition and localization. While

recognition yields decent results, the average performances

in localization are poor.

Figure 7. ROC curves for Product 1.

Figure 8. ROC curves for Product 15.

Such a discrepancy is due to the different nature of the

tasks: in recognition we are still operating in a controlled

environment, where although it is true that the samples we

are comparing come from the different in vitro and in situ

worlds, it is also true that those instances are segmented

from the cluttered background, and therefore easier to ana-

lyze. On the other hand, localization must consider the full

background, which contributes a significant amount of con-

fusion to the problem. In this sense localization expresses

the core of the problem: find the correspondence between

in vitro samples and cluttered, noise corrupted, realistic in

situ scenes. Figures 10, 11 and 12 are examples of different

cases of the localization performance of the 3 algorithms

on the dataset. From Figure 10 we see CHM perform well

for product 52, while SIFT and boosted Haar-like features

are not as good. In fact, object 52 has a distinctive orange

color, which clearly stands out of the background. On the

other hand, the remaining two methods cannot rely on such

precious information and they are misled by the text on the



neighboring products. Figure 11 shows good localization by

all the methods on the product where SIFT performs best.

The characteristics of the product (clear and distinctive col-

ors, multiple pattern variations) generate informative fea-

tures for every algorithm. Only boosted Haar like features

are partially misled by a neighbor. Taking a closer look at

the misdetection and a fraction of an in vitro sample, the

similarity between the two is evident.

CHM % Recall % Precision % TP % FP

Mean 15 17 18 65

Std Dev. 28 16 35 32

Best (20) 71 82 100 4

Worst(32) 1.7 0.2 0 100

SIFT % Recall % Precision % TP % FP

Mean 72 18 22 62

Std Dev. 20 17 26 28

Best (34) 14 83 93 25

Worst (9) 26 0.9 0 64

ADA % Recall % Precision % TP % FP

Mean 15 17 18 65

Std Dev. 13 13 19 24

Best (92) 35 74 50 38

Worst (5) 0.5 0.2 0 92

Table 2. Localization performances of the 3 algorithms. Mean,

Standard Deviation, Best Case (product number in brackets) and

Worst Case percentages are reported for Overall Recall, Overall

Precision, True Positives and False Positives.

Figure 9. Best and Worst localization samples for CHM, SIFT and

ADA. The products 32, 9 and 5 correspond to the worst results and

20, 34 and 92 the best.

Finally we present a bad localization example: product

74. CHM is misled by portions of the frame very similar

in color to some parts of the in vitro image. For SIFT, the

image is too rich with keypoints for the algorithm to be able

to succeed, in particular because the product of interest is

mainly composed by uniform patterns, so that the keypoints

are found on corners in the writing. This together with the

reflections on the palstic surface of the Yoohoo bottle prove

deceptive for the algorithm. Boosted Haar like features on

the other hand, finds (in grayscale) a product which is dark

on the top and the bottom, and light in the middle, with

some texture inside.

6. Discussion and future work

Our contributions in this paper include (a) a new mul-

timedia database – GroZi-120 – for studying object recog-

nition in situ (i.e., sitting in the real world) using training

images from an in vitro source (i.e., captured under ideal

conditions) and (b) baseline performance figures of three

widely used recognition/detection algorithms that highlight

the challenge presented by this database. The Grozi-120

database contains both in situ and in vitro representations

of the same products, and it presents a wide range of vari-

ability for each product with respect to size, color, rigidity,

shape, illumination, viewpoint and quality.

Figure 10. Localization example for Product 52. On the right: in

vitro image sample.

Figure 11. Example of good localization performance by all the

methods for Product 34. The in vitro image detail on the top right

resembles the only false positive.

Figure 12. Example of poor localization performance for Product

74. On the right: in vitro image sample.

Gathering useful training information from images cap-

tured in ideal conditions is linked to the semantic web im-

age retrieval issue, addressed among others by [22]. In

this work the authors demonstrate the application of com-

mon image search metrics applied to images captured with

a camera-equipped mobile device to find matching images

on the Web or other general-purpose databases. The results

of the testbed suggest the need for more precise and elabo-

rate detection/recognition algorithms to solve the proposed

problem. In fact, the aim of our work was to provide a base-

line against which to test new methods. Color histogram

matching may benefit from the works on color invariants,

e.g., [11] and [10]. Another interesting direction may con-

sist in a combination of the grayscale and color based meth-

ods, such as [2] and [6]. Our database offers not only a



testbed for such approaches trying to link real world data to

clean web or studio images, it can also be seen as an inter-

mediate step or a bridge between the two representations of

the same object. In fact, web and multimedia retrieval can

benefit from a set of pre-existing labeled samples, while at

the same time dynamically increasing and improving such

a set. This type of problem can find applications in mobile

robot navigation like the Semantic Robot Vision Challenge

(SRVC) and also in assistive technologies for the visually

impaired . In fact, in the case of a blind or visually impaired

person that uses a device that recognizes products in a gro-

cery store, it would be impractical to acquire in situ data

every time we need to train the system, thus the in vitro data

captured from the web is a good source of training data.

Therefore we intend as future work to use the in vitro

data set as a seed to build upon, as the user base continues

to use the database and expanding the in situ part as a

means of evaluating different algorithms. Furthermore, we

plan to include more objects in the database and expand

the number examples per object. We also plan to fuse

recognition and detection methods in order to improve the

results as well as to make use of context information about

physical object proximity, identifying products nearby

on the shelf to improve localization of objects in natural

scenes.
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