
1

Grocery Shopping Assistant for the Blind
(GroZi)

 UCSD TIES—Winter 2010

Faculty Advisor:
Serge Belongie

 Tutor:
Victor Correa

Community Client:

 National Federation of the Blind (NFB)

 Client Representative:
 John Miller—NFB Representative

 Visiting Scholar:
 Masaaki Kokawa

 Team Members:
Tess Winlock, Jeffrey Wurzbach, Jaina Chueh, Cankut Guven,

Saitejaswi Kondapalli, Edward Liu, Jeffrey Su, Kevin Tran, Andrea Wong

2

Table of Contents

INTRODUCTION .. 3

SUB TEAMS, THIS QUARTER… ... 4

Webmaster………5

WiiMOTE TEAM ... 9
Introduction: .. 9
General Overview of Usage... 9
Establishing a Bluetooth Connection ... 9
Objectives met this Quarter: ... 10

Finger Tracking using IR light and Wiimote .. 10
Finger Mount Design (reflective illumination) .. 10

How the system works ... 10
Sample C code ... 11
What’s next? .. 12

DEMO BOARD DESIGN TEAM ... 15

Introduction ... 15
The Game Board .. 15
Board Specifications .. 15
What’s next? .. 16

PROTOCOL TEAM.. 19

Introduction ... 19
General Overview of Usage.. 21
The Code .. 24
Experimental Results ... 25
What’s next? .. 26

COMPUTER VISION SIGHTED GUIDE (CVSG) TEAM .. 27

Introduction ... 27
General Overview of Usage.. 27
Camera Caliberation .. 28
Appendix.. 29
Hardware Used ... 30

HARDWARE DESIGN TEAM .. 31

Introduction ... 31
Objectives met this quarter… ... 32

3

REFERENCES .. 35

INTRODUCTION
There are currently 1.3 million legally blind people living in the United States who face daily

obstacles with routine tasks. These individuals cannot shop independently for grocery store items

without sighted assistance.

 Developing assistive technologies and handheld devices allows for the possibility of

increasing independence for the blind and visually impaired. Currently, many grocery stores treat

those that are blind as “high cost” customers, and dramatically undersell to this market, neglecting

to take their needs into consideration. The use of computer vision can be advantageous in helping

these blind customers, as restrictions such as the limited ability of guide dogs of white canes,

frequently changing store layouts, and existing resources do not allow for a completely independent

shopping experience. Using technologies such as object recognition, sign reading, and text-to-

speech notification can allow for a greater autonomous solution to the relevant problem.

In conjunction with Calit2, UCSD’s Computer Vision Lab and TIES, the GroZi project is

working to develop a portable handheld device that can help the blind to collect information and

navigate more efficiently within difficult environments as well as better locate objects and

locations of interest. GroZi’s primary research is focused on the development of a navigational

feedback device that combines a mobile visual object recognition system with haptic feedback.

Although still in its early stages of development, when complete, the GroZi system will allow a

shopper to navigate the supermarket, find a specific aisle, read aisle labels, and use the handheld

grocery assistant device to then scan the aisle for objects that look like products on the shopper’s

list (compiled online and downloaded onto the handheld device prior to going into the store).

This quarter, under the supervision of our advisor, Serge Belongie, we pursue the computer

vision aspects of the project that allows for autonomous detection and localization in the near

future. In the past quarter, our team successfully customized the User Interface (UI) for new

labeling tasks as well as improved the computer program that allows for inserting and storing data

into the database as effortlessly as possible. However, there is still room for improvement. While

this improvement awaits refinement, the focus this quarter has been shifted to the integrating CVSG

to develop the software that processes images of a grocery shelf model. Additionally, a special

request by John Miller has the team involved in challenging themselves to build a recording

program that will facilitate communication for the blind in industrial work involving visual

graphics. The following document will serve as a description of what has been accomplished thus

far, what has been learned and overcome, and the processes involved in designing and

4

implementing a usable grocery assistant device for the blind to assist future members of TIES GroZi

team.

5

Sub Teams, this quarter…

This quarter the GroZi team was divided into Sub teams:

WiiMote Team: Andrea and Jaina
Demo Board Design Team: Jeffrey S. and Edward
Protocol Team: Kevin

Gameboard Team: Saitejaswi Kondapall

Computer Vision Sighted Guide (CVSG) team: Cankut, , Teja
Hardware Design Team: Jeffrey W

6

Webmaster: Jaina Chueh

Official TIES GroZi website: http://ties.ucsd.edu/projects/gsa/index.shtml

Official GroZi website: http://grozi.calit2.net/

Introduction
This section is written for future webmasters to gain an understanding of the setup of existing files. The task

of a webmaster is to update the TIES GroZi website with the current progress of the project.

Most of the content on this website are done in SHTML. The only difference between regular HTML and

SHTML is the extra letter in the extension (.shtml) and this code.

<!--#include file="addedfile.txt" -->

The S stands for 'Server Side Include' or SSI. When an SHTML webpage is sent to the web browser window, it

gets assembled on the server and then sent to be viewed. The normal HTML tags all still work the same, the

SHTML simply lets you INCLUDE other pieces into the HTML page.

Below is an example:

This is a screenshot of the Client page. The red box contains all the content the webmaster can edit in the

“client.shtml” file.

http://ties.ucsd.edu/projects/gsa/index.shtml
http://grozi.calit2.net/

7

Log-in
Username and password will be provided to the webmaster from TIES when the webmaster is designated.

Once you have received the username and password:

Host name: <server name>

Port: 22 (default)

Login: <username>

Password: <password>

To upload files to the server in SSH, first log in:

Open File Transfer Client:

8

Drag files from your machine on the left to the directories on the server on the right to upload.

Files currently in use on the website

 index.shtml

 project_goals.shtml

 quarter_goals.shtml

 members.shtml

 documents.shtml

 photos.shtml

 client.shtml

 header.html

 footer.html

 contact.htm

 style.css

 /images – images used in “index.shtml” and “photos.shtml”

o grozi.jpg

o grozi_board.jpg

9

o grozi_grocery.jpg

o grozi_redrobot.jpg

o grozi_wiimote.jpg

o NFBlogo.jpg

 /Other – files listed in “documents.shtml”

o grozi_slam.pdf

o grozi_techbrief.pdf

o TIESGroZiFa08.pdf

o TIESGroZiFa09.pdf

o TIESGroZiSp07.pdf

o TIESGroZiSp09.pdf

o TIESGroZiSu09.pdf

o TIESGroZiWi07.pdf

o TIESGroZiWi08.pdf

o TIESGroZiWi09.pdf

10

Wiimote Team: Jaina Chueh, Andrea Wong

INTRODUCTION
The main purpose of the Wiimote team is to direct a blind user’s hand to the desired product through the
strategic use of haptic feedback. This is done by replacing the red push pin currently used by the Demo
Board with the user’s hand and directing the user to the desired grocery product by communicating with the
CVSG module. Nintendo’s Wiimote is able to perform the needed tasks and is perfect for GroZi applications.
The Wiimote is able to translate its position and motion using infrared sensor and accelerometers. The
Wiimote’s vibrating motors as the actual haptic feedback provided to the user, and its speakers as a way of
communicating to the user the successful location of the desired product. The Wiimote can also be connected
to a computer or laptop via Bluetooth communication. In this way, software can then program the Wiimote
to suit GroZi’s specific needs.

GENERAL OVERVIEW AND USAGE
The objective of the Wiimote subteam was to connect a Wiimote to a laptop computer and develop and
implement software which uses the various functions of the Wiimote to specifically fit the GroZi prototype
requirements. The general procedures taken by the Wiimote team can be broken into two basic parts:
establishing a Bluetooth connection and implementing software.

ESTABLISHING BLUETOOTH CONNECTION

The first step was to establish the Bluetooth connection. This task proved to be rather difficult with hours of
troubleshooting. The problems encountered stem from compatibility issues between the computer and the
Wiimote. Although both devices are Bluetooth capable, the Wiimote was not made for use with a normal
computer but with the Wii. The obstacles we faced this quarter includes incompatibilities between Wiimote
and the Bluebooth stack and Java libraries that handles the communications between a Bluetooth device and
the computer in different version of Windows (Windows XP, Windows Vista, Windows 7, and 64-bit
Windows). We will explain these problems in detail in the "This Quarter" section.

To establish a Bluetooth connection, a computer must have a Bluetooth device installed and become
Bluetooth capable. Some computers have an internal Bluetooth device, while others need an external
adapter. The choice is usually given to the buyer when purchasing a computer. One of the main objectives of
the Wiimote team last quarter was to find a Bluetooth device on a Windows machine that works with the
Wiimote. The team was able to compile a list of compatible and incompatible devices, which also includes
working Bluetooth driver stacks to be used with the specific device. The particular combination of device
and driver stack used was the Rocketfish 2.0 Bluetooth Dongle and the Widcomm Bluetooth Software v.
5.1.0.1100.
One of the biggest issues the team last quarter faced was the Microsoft Bluetooth Stack interfering with the
communication between the additional driver and the Wiimote. The team resolved this issue by ripping, or
removing and disabling the Microsoft stack from the system. Ripping the Microsoft Bluetooth stacks was a
long process in itself. Instructions to perform this task are available from http://www.dev-
toast.com/2007/01/05/uncrippling-bluetooth-in-vista-rtm/.

http://www.dev-toast.com/2007/01/05/uncrippling-bluetooth-in-vista-rtm/
http://www.dev-toast.com/2007/01/05/uncrippling-bluetooth-in-vista-rtm/

11

OBJECTIVES THIS QUARTER

RUN AND TEST AND DEBUG JAVA PROGRAM

The first thing the team needed to do was to establish a Bluetooth connection with their laptops and the
Wiimote. Due to the fact that both members of the team did not have Bluetooth in their laptops, the team had
to buy a Bluetooth dongle, an external Bluetooth device. After reading the previous quarter’s report and
availability at Best Buy, the team decided to buy a Rocketfish Bluetooth 2.1 dongle at a cost of $38.05
(including taxes). The device comes with its own installation CD. Bypassing last quarter’s problem with
Windows Vista OS, this quarter’s two laptops used Windows XP and Windows 7. Once installed on both
laptops, the device was capable of identifying other Bluetooth devices, including the Wiimote, with no
problem for the next weeks.

At nearly at the end of the quarter (around week 9), the team encountered a problem with the Bluetooth
device: the dongle had stopped working. It was showing itself as a hidden device USB and not as a Bluetooth
device. The solution was to uninstall it and reinstall it again with the installation CD that came with the
dongle. So far, there has not been another problem with the Bluetooth dongle.

Once the Bluetooth connection was established, the team worked on setting up the Java program from
previous quarter’s team wrote for tracking the hand position using the Wiimote’s IR sensor. Directions to set
up the Java program The Java program only works on the Windows XP laptop and not on the Windows 7. The
program (working with WinXP) was tested by moving the Wiimote and with a light source. The Wiimote
vibrates when it finds a light source such as sunlight, a kitchen lighter (fire) or a flashlight.

Another requisite for the team was to set up the Java program in the new GroZi’s laptop. The reason for this
was so that the GroZi team gets to have all working programs under one laptop in order to be able to present
GroZi to future clients and expos.
Since the GroZi’s laptop has its own Bluetooth, the Rocketfish dongle was not installed. Once the Java library
and program was setup, the program did not work. It kept trying to locate the Wiimote but it was
unsuccessful. Due to this, the team thought that there was a possible Bluetooth stacking incompatibility in
the GroZi laptop. After ripping the current stacks, it turns out it was not a Bluetooth stacking problem. Our
reasoning is because the Bluetooth device in the laptop is able to identify and find the Wiimote. With
additional help, the team has educationally guessed that it may be a Java library to Windows 7 or Win bit 64
incompatibility problem or both.

Currently, the Java Program does not work in the GroZi’s laptop. The team’s temporary solution was to
record two videos simultaneously to show that the Java Program does work. The videos show a moving
Wiimote with exaggerated motions and a real time graph of its acceleration in the x, y, z space. The colored
lines: Red, Blue, and Green are coordinates of the Wiimote going left/right (x-axis), up/down (y-axis) and
forward/backwards (z-axis). The white line is the time axis. When the Wiimote finds light, it vibrates. One
can see this when the red, blue, and/or green lines have a higher frequency. Additionally, pictures of the
running program were taken.

C++ WIIMOTE LIBRARY

In order for integration of software between CVSG and Wiimote Team to be possible in the future, the

12

Wiimote team must provide code in C++. The reason is because the CVSG code utilizes OpenCV, which is
written in C++. The Wiimote team this quarter researched and found a few C++ Wiimote libraries written
and distributed by various developers on the internet, available in APPENDIX. The C++ Wiimote library the
team has decided to research further in depth is "Wiiusecpp"
(http://www.missioncognition.net/wiiusecpp).

Wiiusecpp is the C++ wrapper for Wiiuse, which is written in C. Wiiusecpp supports functions that can be
utilize to accomplish our project requirements, such as tracking Infrared and generating the acceleration of
the Wiimote. These two functions can generate data for the CVSG program to analyze and eventually provide
instructions to guide the user's hand to the desired grocery product.

Setup C++ library with Eclipse Galileo for C/C++

To start development of the Wiimote C++ program, the team needs to install Eclipse Galileo for C/C++. The
team this quarter has encountered many problems in the process due to unfamiliarity of Eclipse. To prevent
future Wiimote team from running the same problems, a complete list of instruction to set up Eclipse for
C/C++ is available in APPENDIX. Below shows a few issues that took a long period of time to research and
debug.

Problems & Solutions

 "Launch failed. Binary not found." when try to run the program
o You must "Build" the project first. The shortcut in Eclipse is Ctrl+B. You must build an object

file before you can compile it, because otherwise Eclipse cannot link and load that object file,
and will not have the required binary numbers to execute.

 Eclipse console shows no activity when running the program
o Eclipse was unable to produce any output in its console when the team run any program. To

resolve this, you must first generate the executable using Eclipse's BUILD function, then use
Windows' Command Prompt (cmd.exe) to run the executable

o To find the executable in Window's Command Prompt
 From the Desktop, click on Start, and then type in "cmd.exe"
 Navigate to your Eclipse workspace folder

 To change directory, use command "cd <directory name>"
 To list all items in the current directory, use command "dir"

 Navigate to your project directory
 In your project directory, go in the "Debug" directory
 Once inside the Debug directory, type in the name of the executable "<source file

name>.exe" to run

FUTURE PLANS
An immediate future plan is to keep on coding in C++ since our end goal is to be able to integrate the
program with the CVSG code. The Wiimote team is still having problems with integrating the Java library
with Windows 7. Future Wiimote teams will need to solve this problem. Although the Java program will not
be in use, this problem may come up again in the C++ library. Next quarter’s team will need to make sure that

http://www.missioncognition.net/wiiusecpp

13

the C++ program is able to connect with the Wiimote and Windows 7. Once the C++ or Java program work,
the teams should gather information on the sensitivity of the Wiimote. This means, what is the smallest
motion that one can make (i.e. moving 1cm or 1mm) that the C++/Java program will capture?
Another plan is to edit the videos taken this quarter. Currently, the videos are raw but it will be needed to be
edited to be more presentable. Although the Java program does not work in the GroZi’s laptop, having videos
will be a small proof that the Java program does function in Windows XP. To reiterate, this is a temporary
solution until the C++ or Java program starts working.
This quarter, the team was not able to work on the reflective tape ring. Yet, future teams should recreate the
reflective tape ring that the previous team did and buy and LED array. There is a list of requirements for the
reflective tape ring that the teams should follow.

LIST OF REQUIREMENTS
1. The user must wear a ring that reflects IR light, within ±100nm of 590nm (?).
2. The user must use the hand with the ring to select products
3. The user will wear an IR source directed towards the hand with the ring, such that the reflective ring is

not in a shadow of the IR source.
4. The Wiimote shall track the hand position within TBD centimeters of the actual hand position.
5. The ring shall be made of velcro type material.

APPENDIX

To run both Java and C++ files on Eclipse
Install Eclipse IDE for Java Developers + Eclipse CDT

1. Download and install Eclipse IDE for Java Developers (http://www.eclipse.org/downloads/)
2. Download Eclipse C/C++ Development Tooling (CDT) (http://www.eclipse.org/cdt/)
3. Extract CDT zip file to where your Eclipse.exe is located
4. After unzipping the file into the Eclipse directory, your Eclipse plugin directory should have

org.eclipse.cdt.* folders
5. To verify that you have successfully installed CDT, launch Eclipse
6. You should see something similar to the following screenshot in Help > About Eclipse > Installation

Details

http://www.eclipse.org/downloads/
http://www.eclipse.org/cdt/

14

Tutorial instructions taken from http://www.cs.umanitoba.ca/~eclipse/7-EclipseCDT.pdf

Directions to set up the Java program
 Currently, the Java program only works on Windows XP

I. You will need to download:

1. Eclipse Galileo for Java SDK
a. Can be found http://www.eclipse.org/downloads/

2. Bluecove-2.1.0 – Executable Jar
a. Can be found at http://sourceforge.net/projects/bluecove/files/

http://www.cs.umanitoba.ca/~eclipse/7-EclipseCDT.pdf
http://www.eclipse.org/downloads/
http://sourceforge.net/projects/bluecove/files/

15

b. Main website at http://bluecove.org/
3. WiiRemoteJ – Executable Jar

a. Can be found
at http://wiibrew.org/wiki/Wiimote/Library#WiiRemoteJ.2C_a_Java_library_for_the_Wii_Re
mote

4. WRLImpl – Java File
a. Can be found at http://grozi.calit2.net/files/TIESGroZiSp09.pdf
b. It is an edited version of Michael Diamond’s code which is part of the installation package

downloaded from WiiRemoteJ
II. Once Eclipse is installed, you will need to:

1. Create a workspace
2. Create a new project
3. Move WRLImpl Java file to the source folder of your project (src).
4. Add in a JRE System Library [Java SE 1.6]
5. In Referenced Libraries add in the bluecove-2.1.0.jar and WiiRemote.jar
6. Build path on all 3 files (WRLImpl, Bluecove and WiiRemote)

III. To run the program:
1. Turn on the Wiimote
2. Sync the Wiimote by pressing the red button (located in the batteries area)
3. Make sure the Bluetooth dongle is able to find and identify the Wiimote
4. Run the program

IV. A black window with red, green, blue and white lines should pop up. This is the real time graph.

Instructions to install Eclipse for C/C++, MinGW, and Wiiusecpp

1. Download and install Eclipse for IDE C/C++ Developers
Download and install MinGW as C/C++ compiler (the team used v. 5.1.6)

a. Add to path
1. From the Desktop, right-click My Computer and click Properties.
2. In the System Properties window, click on the Advanced tab.
3. In the Advanced section, click the Environment Variables button.

2. Download Wiiuse (the team used v. 0.12)
3. Create a workspace (default)
4. Create a new project
5. To link the library:

a. Right-click on project name->Properties->C/C++ Build->Settings->MinGW C++ Linker-
>Libraries

b. Under Libraries, add "wiiuse"
c. Under Library search path, add your project via Add…->Workspace->project name

6. Create a source folder and drag & drop these files in:
 wiiuse.h
 wiiusecpp.h
 wiiusecpp.cpp
 Drag & drop "wiiuse.lib" into the project

7. Start development of code!

The list of C++ Wiimote libraries the team has found:

1. Wiiyourself http://wiiyourself.gl.tter.org/
2. GlovePIE http://glovepie.org/glovepie_download.php

http://bluecove.org/
http://wiibrew.org/wiki/Wiimote/Library#WiiRemoteJ.2C_a_Java_library_for_the_Wii_Remote
http://wiibrew.org/wiki/Wiimote/Library#WiiRemoteJ.2C_a_Java_library_for_the_Wii_Remote
http://grozi.calit2.net/files/TIESGroZiSp09.pdf
http://wiiyourself.gl.tter.org/
http://glovepie.org/glovepie_download.php

16

Other References (not C++)
1. http://www.brianpeek.com/blog/pages/net-based-wiimote-applications.aspx
2. http://www.wiimoteproject.com/
3. http://johnnylee.net/projects/wii/
4. http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx

Demo Board Design Team: Jeffrey Su & Ed Liu
Introduction

The Demo Board design team’s goals are to create demo boards that allow performance

evaluation of various algorithms like those used in the Remote Sighted Guide. The demo boards

need to mimic grocery store shelves and still be easily transportable. Some of the key points these

demos will help us solve is variability problems likes those induced by shading/poor lighting

conditions, occlusion of the image, and perspective issues. This quarter's demo boards need to help

to replace some of the material that was causing trouble for the CVSG team. The electric tape was

causing trouble for the camera because it was reflecting light. Also, we did an experiment where we

had people try to navigate the board by having the instructions from a program tell us where to go.

We then realized that we needed more pins because the game was too easy for people to guess at

the answer. Finally we are prototyping a new demo board that is easier to use. We found that

blindfolded subjects found placing the pushpin in the pin-hole difficult and too slow.

The Game Board
The role of the demo game board was to allow the various teams, especially the Computer

Vision Sighted Guide (CVSG) and Protocol teams, to test their algorithms within a controlled

environment. If the team could not get their Computer Vision and Protocol programs and hardware

working with the board, then getting it to work in an actual grocery store would be even less

plausible. Thus, our goal was to design a cheap and easy do-it-yourself board to work with certain

isolated variables in the grocery store environment.

 The board itself is arranged in a 23x25 square grid with wooden dowels splitting certain

rows to mimic the shelves of a grocery store. Push pins were used as "game pieces" to denote the

target, the corners of the board, and the hand piece. Other game pieces were placed throughout the

board as “distracters.” With this demo board, one can play a game in which Player 1 chooses a

target square on the grid, and, through a series of predetermined commands, guides Player 2 (the

"blind" player) to that target square.

Board Specifications

http://www.brianpeek.com/blog/pages/net-based-wiimote-applications.aspx
http://www.wiimoteproject.com/
http://johnnylee.net/projects/wii/
http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx

17

The following are the items and materials used to build the board. A camera tripod, though

not specified, was also used to hold up the camera. (See Table 2.1 below)

Board materials

2 foam boards

multicolored push-pins

3/4 in. felt cloth

super glue

Board (edge to edge including felt border) 51 cm x 51 cm

Grid Squares (ea. w/ a hole in the center for

push-pins)
2 cm x 2 cm

Grid (inside felt border) 50 cm x 46 cm

Width of border 3/4 in

Squares between shelves
5 (for the middle three shelves)

4 (for the top- and bottom-most shelves)

of shelves (wooden dowels) 4

Distance from edge of black tape to edge of

grid

Top: 5 mm

Bottom: 9 mm

Distance from table to bottom of camera

lens

(mounted on tripod)

50 cm

Distance from edge of board to center of

tripod
18.5 cm

colors of pieces used (multicolored push-

pins)

red (target. Has spherical head on top rather than

cylindrical to be located by touch), blue (hand

location), green (distractors), yellow (corner

demarcations)

Table 2.1: Board Specifications

18

What’s next?
Future Considerations and Recommendations

Prototyping a New Demo Board
We are considering on building a new demo board. The board size will be approximately the

same as the one as the one as we have now. There are plastic tubes(anchors) and can fit in these

holes and can represent the pins that we use now. Issues that we are having are coming from the

weight and portability of the board. One possible solution is being able to fold up the board, as well

as being able to keep the pieces on.

19

Protocol Team: Kevin Tran & Saitejaswi Kondapalli
Introduction

What is the GroZi Grocery Shopper Game Program?
The GroZi Grocery Shopper Game application is new software that is under development to

work in conjunction with the images the Computer Vision Sighted Guide (CVSG) team is able to

process. The purpose of this program is to be able to take the image data (i.e. hand token location,

item token location) provided in a file from CVSG and process it in such a way that it will provide

directions from the current hand location to the target item location. Ideally, once the

implementation of this software is complete, it should help analyze how to efficiently guide a blind

person to a grocery product.

General Overview of Usage
The GroZi Grocery Shopper Game program is a Win32 Application written in C programming

language. Currently, the code (located in files Game_Code.c and Game_Code.h) can be run using

Visual Studio 2008 or in a Linux environment by compiling using the gcc command.

Upon starting the program, the user will be prompted with the main menu (see figure 3.1a) in

which they can select to play a “new game”, view “options”, or “quit”.

Figure 3.1a : GroZi Grocery Shopper Game main menu options

If the user chooses to start a new game, (by entering the letter N), the software will

automatically generate a random (x, y) coordinate from a supplied file which will be used for the

target location. Next, the program will prompt the user to enter their initial hand location and store

this into an array. The program then lets the user know to press spacebar when they would like the

timer to begin. As soon as spacebar has been pressed, the game menu is shown (see figure 3.1b)

with the following options:

20

1 – Get Instruction

2 – Input new hand token location

3 – Analyze board

9 – Quit to main menu

 Figure 3.1b: In play menu options

Get Instruction provides the user with the next move to get to the target location by

providing an up or down and right or left instruction. The user then is able to input a new hand

token location at which point the program will either congratulate you because you found the item,

or wait for you to ask for a new instruction. This menu keeps looping until the item is found. At this

point the final time and number of moves it took to find the item will be displayed (Figure 3.1c).

 Figure 3.1c: Output from a full game, beginning to end with user finding target item

21

The Code
Data structures used (declared in Game_Code.h) :

 typedef struct {

 int x,y;

 int sign;

} GameSquareType;

GameSquareType hand_array[POSS_MAX]; // array of hand token positions

GameSquareType item_array[POSS_MAX]; // array of target item positions

GameSquareType other_item_array[POSS_MAX];

Main code (Game_Code.c):
/* Looping main menu */

 switch(main_option)

 {

 case 'N':

 case 'n':

 /* new game */

 break;

 case 'O':

 case 'o':

 /* options */

 break;

 case 'Q':

 case 'q':

 printf("Thank you for playing.\n");

 exit(0);

 break;

 }

/* In game looping menu */

 while(game_win == 0 || game_running == 1)

 {

 game_menu();

 scanf("%d", &game_option);

 getchar();

 switch(game_option)

 {

 case 1:

 my_get_move(hand_array, item_array, 0);

 break;

 case 2:

 set_hand_location(hand_array, 0);

 total_moves++;

 break;

 case 3:

 // analyze_virtual_board();

 break;

 case 9:

 game_win = 0;

 exit (0);

 break;

}

22

/* Function to automatically set item location from randomly generated x y

coordinates file */

static int set_item_location(GameSquareType itemarray[], int index)

{

 FILE * fp;

 char * mode = 'r'; // read

 int temp_x, temp_y;

 int rand_num, counter = 0;

 printf("Obtaining location of item [x y]...\n");

// Change file path according to where rand100xy.txt is located on local machine

 fp = fopen("..\\..\\..\\..\\..\\Desktop\\Grozi Game Code\\Grozi

ver.2\\rand100xy.txt", "r");

 if (fp == NULL)

 {

 fprintf(stderr, "Can't open input file!!!\n");

 exit(1);

 }

 srand(time(NULL));

 rand_num = rand() % 100;

 printf("Seed: %d\n", rand_num);

 while (!feof(fp))

if(fscanf(fp, "%d %d", &temp_x, &temp_y) != NULL && rand_num ==

 counter++)

 break;

 itemarray[index].x = temp_x;

 itemarray[index].y = temp_y;

 num_item_tokens++;

 return 1;

}

/* Function to set the initial hand location provided by user */

static int set_hand_location(GameSquareType handarray[], int index)

{

 int temp_x, temp_y;

 printf("Enter location of hand token [x y]: ");

 /* Setting location of item */

 scanf("%d %d", &temp_x, &temp_y);

 getchar();

 /* Do error checking here if necessary */

 handarray[index].x = temp_x;

 handarray[index].y = temp_y;

 return 1;

}

23

/* Function to calculate actual directions based on user input of hand

 location */

static void my_get_move(GameSquareType handarray[], GameSquareType itemarray[], int index)

{

 diff_x = item_array[index].x - hand_array[index].x; // x-cord diff

 diff_y = item_array[index].y - hand_array[index].y; // y-cord diff

 // Moving up __ left __

 if (diff_x < 0 && diff_y < 0)

 {

 printf("%s %d, %s %d\n", up, (diff_y * -1), left, (diff_x * -1));

 }

 // Moving up __ right __

 if (diff_x > 0 && diff_y < 0)

 {

 printf("%s %d, %s %d\n", up, (diff_y * -1), right, diff_x);

 }

 // Moving down __ right __

 if (diff_x > 0 && diff_y > 0)

 {

 printf("%s %d, %s %d\n", down, diff_y , right, diff_x);

 }

 // Moving down __ left __

 if (diff_x < 0 && diff_y > 0)

 {

 printf("%s %d, %s %d\n", down, diff_y, left, (diff_x * -1));

 }

 // Moving just down __

 if (diff_x == 0 && diff_y > 0)

 {

 printf("%s %d\n", down, diff_y);

 }

 // Moving just up __

 if (diff_x == 0 && diff_y < 0)

 {

 printf("%s %d\n", up, (diff_y * -1));

 }

 // Moving just left __

 if (diff_x > 0 && diff_y == 0)

 {

 printf("%s %d\n", left, diff_x);

 }

 // Moving just right __

 if (diff_x < 0 && diff_y == 0)

 {

 printf("%s %d\n", right, (diff_x * -1));

 }

 // Item found

 if (diff_x == 0 && diff_y == 0)

 {

 printf("You got it!\n");

 }

}

24

Experimental Results

Generating the Protocol
 At first, we used a Scrabble board to create a list of protocols that we thought were

necessary to run the game. It was a 15 x 15 board and the group just did trials of choosing a spot

for the item, and a place for the hand token and manually told the player to move from position to

position. This generated our base list of words that we needed. This allowed for fast movement

between shelves instead of saying the exact number of moves needed. We also decided that a

reasonable amount of distance to tell the player the exact coordinates of the item had to be less than

five in both vertical and horizontal direction. Other protocols were added either to enhance the

interaction with the game or for debugging purposes. The following table (Table 3.3a) lists the

protocols we decided to include in the game.
Number of

steps
Direction Shelves Responses Other Debugging

One Left Upper Yes Same X

Two Right Middle No Row Y

Three Up Lower Correct Column Item at
location (x, y)

Four Down Shelf Wrong Item

Five Shelves Item found A lot

 Start

Table 3.3a: List of protocols used in the game

 The output of the protocol was designed to respond differently depending on the distance of

the user’s hand pin. When given the hand location, we process it as such: If the hand is on a different

shelf than the item, we will use text-to-speech to say—“Wrong shelf, shelf “shelf_number” row

“row-number,” where shelf_number and row_number are variables within the program. It then

proceeds to TTS horizontal information as such—If the item is directly below or above the hand

location, we prompt “same column.” Otherwise, if it is between one and five squares different from

the hand location, either left or right, we will tell the user the exact distance left or the exact

distance to the right. If it is any greater than five, we tell the user “a lot” to the left or the right. And

of course, when the hand is directly on the item, we say “Congratulations, you’ve found the item!”

and the program will continue to begin another instance of the game.

Trials testing the Protocol
 Having developed a working protocol, our goal this quarter was to generate experimental

data on how the commands were performing when using a configuration file that represented the

25

demoboard accurately. Previously we had conducted tests on checkerboard style arrangements,

and thusly we felt it necessary to test the protocol on the actual prototype. As before, these are the

protocol commands issued by the program:

Number of
steps

Direction Shelves Responses Other Debugging

One Left Upper Yes Same X

Two Right Middle No Row Y

Three Up Lower Correct Column Item at
location (x, y)

Four Down Shelf Wrong Item

Five Shelves Item found A lot

 Start

Table 3.3a: List of protocols used in the game

The following is a sample output of the game using a 23x25 board. The origin is at (0, 0)

which is the bottom left corner. We placed the item at (6, 4) and the player arbitrarily chose a spot

which happens to be (10, 12). Player – P Director – D

P: “this one?” (at position 10, 12)

D: “no, down two shelves”

P: (chooses position 10, 3) “this one?”

D: “correct shelf, left four, up one”

P: “this one?” (at position 6, 4)

D: “Item found”

We conducted seven timed trials using the demoboard. Trials were conducted by Kevin and

time was taken via stopwatch by Cankut. Our test environment was generated by a random target

location on the demoboard and a statically set hand starting position. We did not allow

communication between the conductor of the test and the participant as to ensure the times were

strictly based on the performance of the protocol. The demoboard setup was loaded from a file

named “config_fall09.txt.”

Trial Times (Randomly generated item location and hand position (0,0))—see table 3.3b below

Size of board: 23x25 (demoboard)

Player: John Miller Director: Kevin Tran Timer: Cankut Guven

26

Time in

seconds

2:06

Player: John Miller Director: Kevin Tran Timer: Cankut Guven

Time in

seconds

0:52 (ERROR)

Player: Jeff Su Director: Kevin Tran Timer: Cankut Guven

Time in

seconds

0:00 (ERROR)

Player: Jeff Su Director: Kevin Tran Timer: Cankut Guven

Time in

seconds

1:48

Player: Andrea Wong Director: Kevin Tran Timer: Cankut Guven

Time in

seconds

1:06

Player: Andrea Wong Director: Kevin Tran Timer: Cankut Guven

Time in

seconds

1:00

Player: Jaina Chueh Director: Kevin Tran Timer: Cankut Guven

Time in

seconds

1:05

Table 3.3b: Trial times

 The (ERROR) markings above indicated a latent bug present in our configuration file. This

error was categorized as an “off-by-one” where the configuration file listed incorrect shelf locations.

However the error only manifested if the target location was on the board between the first and

second shelves, otherwise everything else was valid. That is to say, the trials without error can be

considered acceptable data.

Program Consolidation

27

Merging the Protocol and CVSG programs
 After demonstrating that the protocol program worked well with the demoboard prototype,

we felt it beneficial to merge the protocol and CVSG programs into one executable. For this quarter,

the integration was done at the most basic level. The programs themselves remained entirely

separated, that is to say there exists no communication between the two. However, being that they

are consolidated into one module, we needed to provide a way to run each program separately. We

decided to achieve this goal by implementing a mandatory command line argument, either 1 or 2,

which would act as a switch between the two programs. Here is an example:

%: grozi.exe 1 /* this would launch the CVSG program */

%: grozi.exe 2 /* this would launch the protocol program */

 Having these two programs integrated will help to facilitate the future goal of having the

CVSG communicate with the protocol through the sharing of program memory and storage.

How to run the Protocol
A Quick Tutorial
 The protocol program is intended to have few prompts so that the text-to-speech system is

not inundated with words to say. However, this may increase the difficulty of operation due to users

who are unfamiliar with the program not knowing how to proceed. The beginning of the program

contains enough prompted information for one to continue unhindered. But as soon as the program

speaks “Press space and enter to continue” an empty line is presented to the user. Whenever the

program reaches this state, the user has three options:

1.) Enter in the number 1 and <enter> to check the current hand location against the target

location. This will generate the protocol output that will direct the user to the target

location.

2.) Enter in the number 2 and <enter> to enter in a new hand location. This will allow the

program to begin parsing two numbers, x and y, to “move” the hand to a different

location on the board. The input should be “x y” where there exists a space between the

first coordinate and the second.

3.) Enter in the number 9 and <enter> to prematurely exit the program.

Requirements
Items that must be met
 -The protocol shall not speak extra information such as long menus, a counting timer, etc.

 - The software shall support Windows 7 x64.

 -The software shall support Windows XP Professional x86.

28

What’s next?
Future Considerations and Recommendation

Having confirmed the correctness of the protocol when using the demoboard specifications, and

integrating the protocol and CVSG code into one, we hope in the future to allow communication

between the two programs. That is, we desire feed the information gained from image analysis done

by the CVSG directly into the protocol so that the protocol can respond to the user based on the real

life movements performed by the user. This is in comparison to a trial director who is manually

inputting new user locations as they arise.

 Once this can be done, we may begin using this consolidated module to run more meaningful
tests on the demoboard. In this way, we can also indirectly test CVSG code for efficiency and speed.

29

Computer Vision Sighted Guide (CVSG) Team: Cankut
Guven, Kevin Tran, Saitejaswi Kondapalli

Introduction

The CVSG(Computer Vision Sighted Guide) team's task is to create a program to recognize

various colors on a board in a static situation. An idealized situation will be presented to the

program in which computer algorithms will be used to evaluate a still image of the idealized

environment. The blind user's hand will not be present physically, but instead represented by a red

pin. The idealized environment will include a “desired” token (blue pin), on a demo board, and a

series of "noise" tokens (green pins). The software will determine the location of the green pin and

report it to the Game Square software.

This quarter, the CVSG team was able to accomplish the following tasks: identifying the

location of the pins on the board; cycling through four game images. The program was able to

successfully identify 159 of 160 pins (a success rate of 99.38%). In an ideal world, this would be

100%, but realistically, a success rate of 99% is desired such that the program does not lead the

user to an incorrect item (note that 1% error rate is still pretty high considering that 1 out of 100

times the user of the program might end up making cream of mushroom soup when chicken noodle

soup was desired).

Code, documents, and images can be found at http://code.google.com/p/grozi-cvsg

Requirements for the CVSG Software

 Recognize pin locations with 99% accuracy.

 Image of the board must be taken as an overhead view

 The angle between the camera face and the Demo Board shall not be more than 5 degrees

from parallel.

 The center of the image must be within the white (inner) portion of the board.

 The image must be at least 800x600 pixels.

 The input to the protocol software must be within the dimensions of the demo board.

 The images of the Demo Board shall not be taken with a flash

 The software will support Windows 7 x64

 The software will support Windows XP Professional x86

 The software will make use of OpenCV

http://code.google.com/p/grozi-cvsg

30

 The images will be taken in normal indoor lighting conditions

 The gameboard imagery shall be photoshopped such that pixels outside of the black border

of the gameboard are a uniform white color

 Gameboard imagery pixels inside the black border region and in the interior of the black

border region (the white part of the board where the shelf dividers and pins are) shall not be

photo-shopped or modified.

 The protocol software shall work with an off-the-shelf screen reader software program for

the blind such as JAWS 10.0 or higher from Freedom Scientific.

 The protocol software shall generate text output that a screen reader can turn in to the

guiding instructions. No additional screen output will be present in this mode.

General Overview and Usage
The software can be run in one of two modes: protocol or CVSG. The program must be provided

with an argument of 1 or 2 in order to initialize.

Upon executing with the argument of 1, the software will proceed with the CVSG software. It will

prompt the user whether or not calibration images should be retaken. This was implemented in a

prior quarter when the webcam was in use, thus is a feature that is currently disregarded and thus a

reply of [N]o should be given. The program will then prompt the user to make a selection of

whether the software should analyze the image, and thus provide the pixel locations of the pins and

the corners of the board, or to move on to the next image. In order to detect the board and the pin

locations, some initial assumptions were made. Detection is successful under the following

conditions:

 Lighting such that glare from the tape is not too bright

 The middle of the image/photograph is on the game board (i.e. if the width x length of the

board is 500x500, the point 250x250 is on the game board)

 The black border is visible in its entirety (no obstructions, such as arms, can be in the way)

 The image is photoshopped to remove any noise outside of the board (such as carpet)

 The images used are calibrated with the camera

With these restrictions in play, the CVSG software was able to detect the location of all the pins

and the corners as shown in Figure 1.1a

 Figure 1.1a: On the left, the console output of the program is shown. On the right, the image of the

board with the green, red, and blue pins circled with their respective colors is shown, in addition to the

detection of the edges of the

31

borde

32

Camera Calibration
In order to calibrate the camera, one can follow these steps:

1. Print out the chessboard (chessboard.pdf) and tape it to a flat surface (e.g. cardboard,

wooden panel) if not already done so.

2. Place Game Board on a flat surface and set up a digital camera on a tripod such that it is

aimed towards the Game Board.

3. Take pictures of the Game Board.

4. In the same setting (without altering the height or location of the tripod), take several

pictures of the chessboard (in experiments that were run in Winter 2010, six images were

taken; this number does not have any scientific significance).

5. Run Board::calibrate with the proper settings (alter std::stringstream imagename such that

it points to the correct files) and use undistortImage(image) on a non-calibrated board

image to correct calibration errors. Then, have the program save the images.

6. Images should now be calibrated.

Several tests on calibrated and non-calibrated images were run and a higher success rate

was discovered in running the algorithm on calibrated images. One of the algorithms in use is the

Hough Transform, which searches for straight lines. In non-calibrated images, what should be

straight lines become distorted due to the lens of the camera, thus masking a straight line as a

curve.

Next Steps

 While detection of the board and the pin locations is a positive step forward, there is a lot

that remains to be accomplished. Here are the goals that would be ideal in helping the project move

forward:

 Increase detection rate from 99.3% to 99.9%

 Attempt board detection with flash photography

 Attempt board detection without photoshopping the image

 Integrate CVSG software with Game Square software to allow Game Square to identify the

row and column of a pin

33

APPENDIX

Language: C++

IDE: Microsoft Visual Studio 2008

Operating System: Windows XP x86

Digital Camera: Sony Cybershot DSC-S650

GameSquare Team: Saitejaswi Kondapalli, Kevin Tran,

Cankut Guven

What is the GameSquare Team?
The GroZi Grocery Shopper Game application is new software that is under development

that incorporates the work three teams: CVSG, GameSquare and Protocol. The purpose of this

program is to be able to take the image data (i.e. hand token location, item token location) provided

in a file from CVSG and convert the pixel coordinates of each pin to respective coordinates on the

game board in order for the Protocol team to do its calculations. This step is essential for the CVSG

and the Protocol software to communicate

34

The input file into the GameSquare program will be the output file of the CVSG program.

The GameSquare code will process its input and produce an output file that will be the

input file to the Protocol program. These files will be plain text files and will follow strict

formatting guidelines.

CVSG_output.txt

The file that is the output of CVSG will be called CVSG_output.txt, which will be a

plain text file that is located in the same directory as the rest of the files. In this file, the

first line in each block will have two integers separated by white space, the first is a integer

represents a color and the second is a integer represents the (n) number of pins that are of

the color. The next n lines will each contain two integers separated by white space. The first

integer is the x-coordinate pixel location of the pin and the second integer is the y-

coordinate pixel location of the pin. There will be at most 4 such blocks of data, each blocks

gives information about the location of a set of pins of each color.

FindGameSquare Code
 The GameSquare code must do the following:

1. Parse through the CVSG_output.txt to get pixel locations for all pins
2. Determine the validity of the board, the follow rules must be observed

a. Pictures shall contain no more than 4 yellow pins
b. Pictures shall contain exactly one red pin
c. Pictures shall contain exactly one blue pin

3. If the gameboard is valid, the next step is to convert each pixel location into a game board
location

4. The validity of the board and the gameboard locations must be written to an output file
called FindGameSquare_output.txt

FindGameSquare_output.txt

The file that is the output of GameSquare will be called FindGameSquare_output.txt,

which will be a plain text file that is located in the same directory as the rest of the files. In

The numbering for each color is as follows:

0 - yellow (corner)
1 - blue (item)
2 - red (hand)
3 – green (distractor)

Figure 1.a: Sample CVSG_output.txt

35

this file the first line will either contain a ‘0’ or ‘1’. A ‘1’ indicates that the gameboard is

valid in the way it is set up. A ‘0’ indicates an invalid gameboard that the protocol will have

to discard. This file also contains blocks of information. The first line in each block will

have two integers separated by white space, the first is a integer represents a color and the

second is a integer represents the (n) number of pins that are of the color. The next n lines

will each contain two integers separated by white space. The first integer is the x-

coordinate board square location of the pin and the second integer is the y-coordinate

board square location of the pin. There will be at most 4 such blocks of data, each blocks

gives information about the location of a set of pins of each color.

Hardware Design Team: Jeffrey W
Introduction

The Hardware design team’s duties are to create physical mock ups of what the

finished GroZi device might look like, from an industrial design point of view. They also are

tasked with the fabrication aspects of the project. They will be creating various devices to

assist in the tracking of the blind user’s hand as well as creating a prototype of the shoulder

mounted camera system.

Objectives met this quarter…
This quarter we created several concept drawings and one set of CAD models for

what a final revision of the product might also look like.

The numbering for each color is as follows:

0 - yellow (corner)
1 - blue (item)
2 - red (hand)
3 – green (distractor)

 Figure 1.b: Sample FindGameSquare_output.txt

36

We began with two concept drawings for the final product. Both of the designs are

whimsical in their nature. A third and forth concept, both in a more serious tone were also

developed. The first design is a classic boxy robot design (see figure 5.1a) . It has been

modeled in CAD and a series of renderings were made. The second design is very similar to

the Wall-E character from the Pixar/Disney movie and the Apple iSight webcam (see figure

5.1b). The second design was not modeled in CAD. The third design is based on a Sony

camera like the ones used on the 3rd floor of the CSE building. This design was also not

modeled in CAD. The fourth design is based on the iPhone and a Microsoft webcam. Both

design 3 and 4 are monocular designs and will require some additional software to pull out

the position of the hand. Designs 1 and 2 are both bi-ocular and use one camera for

product tracking and the second for tracking of the hand. The main benefit for the

monocular design is that the coordinate system for the hand tracking and the coordinate

system for the object tracking will be the same. The bi-ocular system will require a linear

shift to align the coordinate systems, assuming the respective cameras have the same

resolution and lens configuration. The monocular solution also has a reduced part count

and reduced need for support electronics and USB bandwidth and consumes less power.

The monocular solution also means that instead of two cameras of lower resolution, a

single higher resolution camera could be used for the same cost due to the reduced need

for the support components.

The Wiimote team brought fourth an idea to use a fixed IR light source and a

reflective ring or similar fob to allow the hand tracking. This removes the need for an

active system on the user’s hand and should reduce the overall cost of the final design.

Furthermore it is easier to use since the IR light source can be controlled by software.

Another benefit to this design is that the IR light can also be used to provide additional

illumination for the object tracking system.
The Industrial design team also decided to build the shoulder mounted camera

system as a USB device so that it is simpler for the OpenCV team to deal with the cameras.

This also solves the problem of getting the camera signals to the host machine and the

power issue of powering a camera and its support electromechanical system. The USB

cable can provide all needed power for the electronics and the camera. If the mechanical

systems are built judiciously and the drive electronics for those systems are equally well

designed, the whole thing should be able to operate from the 5V, 500mA supply a USB port

provides. However, it is minimally difficult to add external power lines if needed in the

form of a custom cable. One motivation for this path is if the motors that position the

camera inject too much noise into the power supply rails.

37

Figure 5.1a(Left to Right): Classic Boxy Robot initial design; Classic Boxy Robot (CAD

version)

Figure 5.1b: Wall-E prototype

This quarter the industrial design team created a list of requirements for what the final

system must contain.

Industrial Design

1. The shoulder mounted camera assembly shall not weigh more than 1 pound.
2. The shoulder mounted camera assembly shall not interfere with the movements of

the user’s head, within 30 degrees of the plane of the shoulder.
3. The shoulder mounted camera assembly shall not have any sharp edges.
4. The shoulder mounted camera assembly shall be on the user’s right hand shoulder.
5. The shoulder mounted camera assembly shall carry the camera for the computer

vision system.
6. The shoulder mounted camera assembly shall contain an IR light source.

38

7. The shoulder mount shall carry a system for tracking the position of the user’s hand.

The present iPhone based design should meet all of the requirements listed above. The

most critical requirements are the camera carry details and ergonomics requirements.

Since the iPhone-based design is specifically designed for production via injection molding,

it has rounded edges and low weight due to the use of plastics. The shoulder mount from

the Spring 2009 team can be modified to carry the iPhone-based design on the user’s

shoulder. The iPhone based design has not matured enough to have the front of the camera

carrier designed in CAD, however, it will have both the camera used for computer vision

and the IR light source on it.

This quarter we continued to model the iPhone based design. The design has advanced to

include a base and support structure for panning and tilting the camera. The camera

enclosure was modified to interface with the new base and support structure.

The team also helped with board design in terms of materials selection and guidance in the

early stage of the design of the new demo board. Lastly, Jeff helped John get Visual Studio

and SVN repository access installed and configured on his laptop.

Goals for next quarter

 Complete the iPhone CAD Model

39

o Model the front panel of the camera carrier. This sub assembly will contain
the camera and IR light source.

 Create block diagram for hardware for preprocessing images and extracting the
hand position

o Begin designing off board hardware for preprocessing the imagery from the
camera.

 Preprocessing will include keystone correction, image stabilization,
and hand tracking.

 USB interface that is compatible with OpenCV

References

1. http://www.wiili.org/index.php/Compatible_Bluetooth_Devices

2. http://wiibrew.org/wiki/List_of_Working_Bluetooth_Devices
(Compatible Bluetooth Devices)

3. http://www.wiimoteproject.com/bluetooth-and-connectivity-knowledge-center/a-
summary-of-windows-bluetooth-stacks-and-their-connection/

4. http://www.dev-toast.com/2007/01/05/uncrippling-bluetooth-in-vista-rtm/

5.http://www.rapidsharedownload.net/software/widcomm-bluetooth-software-
5.1.0.1100/

6. http://www.wiili.org/forum/bluecove-210-on-bluez-tips-t6355.html

7. http://xii9190.wordpress.com/page/15/ (mainly to find out how to set vibrate)

http://www.wiili.org/forum/wiiremote-disconnection-problem-t5359.html (help on
disconnection problem, but I did it slightly differently in my code)

8. http://www.wiili.org/forum/bluetooth-fails-to-initialize-without-
wiiremotedisconnect()-t6805.html

http://wiki.multimedia.cx/index.php?title=PCM (Audio file needs to be a signed 8-bit PCM)

9. http://grozi.calit2.net/files/TIESGroZiSp09.pdf

http://www.wiili.org/index.php/Compatible_Bluetooth_Devices
http://wiibrew.org/wiki/List_of_Working_Bluetooth_Devices
http://www.wiimoteproject.com/bluetooth-and-connectivity-knowledge-center/a-summary-of-windows-bluetooth-stacks-and-their-connection/
http://www.wiimoteproject.com/bluetooth-and-connectivity-knowledge-center/a-summary-of-windows-bluetooth-stacks-and-their-connection/
http://www.dev-toast.com/2007/01/05/uncrippling-bluetooth-in-vista-rtm/
http://www.rapidsharedownload.net/software/widcomm-bluetooth-software-5.1.0.1100/
http://www.rapidsharedownload.net/software/widcomm-bluetooth-software-5.1.0.1100/
http://www.wiili.org/forum/bluecove-210-on-bluez-tips-t6355.html
http://xii9190.wordpress.com/page/15/
http://www.wiili.org/forum/wiiremote-disconnection-problem-t5359.html
http://www.wiili.org/forum/bluetooth-fails-to-initialize-without-wiiremotedisconnect()-t6805.html
http://www.wiili.org/forum/bluetooth-fails-to-initialize-without-wiiremotedisconnect()-t6805.html
http://wiki.multimedia.cx/index.php?title=PCM%20(Audio%20file%20needs%20to%20be%20a%20signed%208-bit%20PCM)
http://grozi.calit2.net/files/TIESGroZiSp09.pdf

