
1123421341234231412341234123412341234I

1

qwertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfgh

jklzxcvbnmqwertyuiopasdfghjklzxcvb

nmqwertyuiopasdfghjklzxcvbnmqwer

tyuiopasdfghjklzxcvbnmqwertyuiopas

dfghjklzxcvbnmqwertyuiopasdfghjklzx

cvbnmqwertyuiopasdfghjklzxcvbnmq

wertyuiopasdfghjklzxcvbnmqwertyuio

pasdfghjklzxcvbnmqwertyuiopasdfghj

klzxcvbnmqwertyuiopasdfghjklzxcvbn

mqwertyuiopasdfghjklzxcvbnmqwerty

uiopasdfghjklzxcvbnmqwertyuiopasdf

ghjklzxcvbnmqwertyuiopasdfghjklzxc

vbnmqwertyuiopasdfghjklzxcvbnmrty

uiopasdfghjklzxcvbnmqwertyuiopasdf

ghjklzxcvbnmqwertyuiopasdfghjklzxc

vbnmqwertyuiopasdfghjklzxcvbnmqw

Grocery Shopping Assistant for the

Blind (GroZi)

UCSD TIES Winter 2009

Advisor:

Serge Belongie

Community Client:

National Federation of the Blind (NFB)

Client Representative:

John Miller

Team Members:

Grace Sze-en Foo, Michael Tran, Jaina Chueh, Steven Matsasuka,

Raul Marino, Bonnie Han, Nikhil Joshi, Jasmine Nourblin,

Amalia Prada, Marissa Sasak, Hannah Brock, Aritrick Chatterjee

2

Table of Contents

INTRODUCTION ...4

SOYLENT GRID ...5

APPROACH AND METHODOLOGY ...6

DATABASE TEAM

Introduction .. 7

MySql .. 7

Database Java Class... 10

Entity-Relationship Model .. 13

Experiment Images ... 13

User Entered Labels .. 14

Control Images .. 14

Future Work .. 15

USER INTERFACE TEAM

Problems and Solutions .. 16

Approach ... 17

How to create styles to alter the visual aspects of the UI .. 18

How an image is fetched and displayed in the UI ... 19

Fixing grid size and Aspect Ratio of pictures: .. 24

Future Plans for UI .. 26

USABILITY TEAM

What is Usability Team ... 27

Aim of Usability Team ... 27

Recaptcha Model .. 27

Problems and Solutions .. 28

Previous quarter UI ... 28

Current UI .. 29

Future Reference .. 31

Traffic Generation ... 32

Confidence Level ... 33

Help File .. 33

Summary ... 34

REFERENCES .. 35

3

List of Tables and Figures

List of Figures

Figure 1: Illustration of Soylent Grid System .. 5

Figure 2: Entity-Relationship Model ... 13

Figure 3: Old User Interface – Output from WiW_Task.java .. 19

Figure 4: Distorted Images .. 25

Figure 5: UI with Aspect Ratio Fix ... 26

Figure 6: User Interface from Fall 08 .. 28

Figure 7: User Interface designed in Winter 09 .. 29

Figure 8: Appropriate Control Images .. 31

Figure 9: Inappropriate Control Images .. 31

Figure 10: Draft version of Future UI .. 32

List of Tables

Table 1: Changes made to User Interface in Winter 2009 .. 17

Table 2: Creating style in html and java .. 18

4

Introduction

There are currently 1.3 million legally blind people living in the United States who face daily obstacles

with routine tasks, especially in regards to their experiences within supermarkets and stores. Developing

assistive technologies and handheld devices allows for the possibility of increasing independence for

blind and visually impaired. Currently, many grocery stores treat those that are blind as “high cost”

customers, and dramatically undersell to this market, neglecting to take their needs into consideration.

The use of computational vision can be advantageous in helping these blind customers, as restrictions

such as the limited ability of guide dogs, frequently changing store layouts, and existing resources do not

allow for a completely independent shopping experience. Using technologies such as object recognition,

sign reading, and text-to-speech notification could allow for a greater autonomous solution to the

relevant problem.

In conjunction with Calit2, UCSD’s Computer Vision Lab, and TIES, the GroZi project is working to

develop a portable handheld device that can help the blind to collect information and navigate more

efficiently within difficult environments as well as better locate objects and locations of interest. GrloZi’s

primary research is focused on the development of a navigational feedback device that combines a

mobile visual object recognition system with haptic feedback. Although still in its early stages of

development, when complete, the GroZi system will allow a shopper to navigate the supermarket, find a

specific aisle, read aisle labels, and use the handheld MoZi box to then scan the aisle for objects that

look like products on the shopper’s list (compiled online and downloaded onto the handheld device

prior to going into the store).

This quarter, under the supervision of our advisor, Serge Belongie, we pursuit the computer vision

aspects of the project that allows for autonomous detection and localization in the near future. Thereby,

our team successfully customized the User Interface (UI) for new labeling tasks as well as improved the

computer program that allows for inserting and storing data into the database as effortlessly as possible.

However, there is still room for improvement. This means that the incoming contributors to this project

should continue on improving our codes that could further improve the outcome of the project as a

whole. The following document will serve as a description of what we have accomplished thus far, what

we have learned and overcome, and the processes involved in designing and implementing a usable and

accessible interface for the blind to assist future members of TIES GroZi team.

5

Soylent Grid

The Soylent Grid, a subcomponent of GroZi, combines Human Computational Tasks (HCTs) and Machine

Computable Tasks (MCTs) by labeling images and solving common vision problems such as segmentation

and recognition.1 For GroZi to work efficiently, a database, containing images of grocery store products

and their appropriate labels, is needed. Soylent Grid functions by sending these images to a computer

which performs an MCT algorithm in order to identify any text labels. This system performs optical

character recognition, also known as OCR, on product packaging in order to differentiate between

certain grocery items as peanut butter and grapes. Because these items contain differing colors, fonts,

and background images, recognizing the product’s text is challenging. From a Soylent Grid perspective,

the main goal is to obtain differing product images and to obtain such information as the product’s

brand name and a description of the item. If the computer algorithm cannot successfully perform this

task, the image is then sent to users who identify the location and the content of the text (HCTs).

In addition to labeling grocery store products via text, Soylent Grid also functions as a way to secure

websites. These Soylent Grid images can be used as a portal before accessing private information such

as a bank account or an email address. To protect such personal information, these images can be

combined with reCAPTCHA, in which users must enter the text displayed in a distorted image in order to

obtain the desired information. In this way, Soylent Grid provides a double service, a win-win situation,

by not only labeling images for the GroZi database, but also by providing security for users regarding any

personal information.

Figure 1. Illustration of Soylent Grid System

6

Approach and Methodology

In order to design a grocery shopping assistant for the visually impaired, we need a program that will

allow us to save images of grocery store items in a real environment. To avoid the intense human labor,

we exploited the concept introduced above, Soylent Grid. In order to proceed, we then split into three

groups this quarter to set up the necessary preliminary steps:

 User Interface : Amalia Prada, Aritrick Chatterjee, Jasmine Nourblin, Bonnie Han
- Customizing User Interface for new labeling tasks and storing results into a database for

use in future computer vision systems.

 Database: Marissa Sasak, Nikhil Joshi, Raul Marino, Hannah Brock
- The database team’s task consisted of creating the database for storing labels and

images.

 Usability: Michael Tran, Grace Sze-en Foo, Jaina Chueh, Steven Matsasuka
- The Usability team ensured that the Soylent Grid interface is efficient, effective and

satisfying by critiquing results from the Database and User Interface teams.

7

Database

Introduction
This quarter, the database team for Grozi created a MySQL database to store all of the grocery shopping

product image information being used in Soylent Grid. The MySQL database consists of 3 tables; one to

hold the experiment images, one to hold the labels entered by users for the images, and finally a table

of control images. After the tables were created, we inserted “dummy data” into the tables for testing

purposes. The “dummy data” is currently the only data in the tables.

With sample information in the database, we created MySQL code to query and update the information.

The following is a list of functions that can be performed with the current code:

1. Create tables

2. Select all information from any table

3. Select specific rows or columns from any table

4. Delete all information from any table

5. Delete specific entries in a table

6. Insert an entry into any of the tables

7. Checks to see if there are any experiment images that have been shown the specified number of

times. If there is, the code checks all of the labels for the image, to see if any are over the set

percent confidence. If there are labels for an image that meet the percent confidence criteria,

they can be inserted into the control images table.

8. Update the number of times an image has been shown in the UI

9. Update the number of times a user enters a label

10. Check to see if a control image exists

11. Get a random control or experiment image from the database

MySql
Below are sample mysql commands to insert data into the tables and select data from the tables.

Comments are in red.

Database Basics

Author: Hannah Brock (hrbrock@ucsd.edu)

/* See all the entries in the Experiment Images table */

SELECT * FROM Table_Name;

8

/* Delete all of the entries in the table */

DELETE FROM Table_Name;

/****** Generic 'Insert' Commands for the tables ******/

/* Insert into ControlImages Table */

/* 1st Param - The Image ID off the original experiment image. If

there never was an experiment image for the control label/image, a

random number can be used here. We will need to code to make sure the

random number chosen is not already used in the control OR experiment

image table.

 2nd Param - Filename of the image. If the image was originally an

experiment image, it needs to match

 3rd - 6th Params - TopLeftX, TopLeftY, Height, Width

 7th - Confident label for the image

 8th - Percent confidence of the image label when it was moved from

experiment to control table. If it was never in experiment

table, default is 100. This will need to be coded as well.

 9th - This is the time stamp that holds the date and time that the

image was put in the control table. */

INSERT INTO ControlImages VALUES(100,

"file100.jpg",0,0,10,50,"twix",95,NOW());

/* Insert into ExperiemntImages Table */

/* 1st Param - The Image ID of the experiment image. This value is

ALWAYS 0 because the attribute itself is on auto-

increment.

 2nd Param - Filename of the image.

 3rd - 6th Params - TopLeftX, TopLeftY, Height, Width

 7th - The number of times the image is shown in the UI. Default = 0

*/

INSERT INTO ExperimentImages VALUES(0, "file2.jpg",0,0,20,30,0);

/* Insert into UserEnteredLabels Table */

9

/* 1st Param - The Image ID of the experiment image that the label is

being made for

 2nd Param - Label entered by user for particular experiment image

 3rd - The label's ID. This value is ALWAYS 0 because the attribute

 itself is on auto-increment.

 7th - The number of times the label has been entered. Default = 1

*/

INSERT INTO UserEnteredLabels VALUES(4, "Tide",0,1);

/*********** Possible Threshold Commands *************/

/* Note that the times shown threshold is set to the generic

 * value of 100. This will need to be changed. Also, the

 * percent confidence check is set at 95%. This can also be changed

 */

/* Delete the images that have been show 100 times */

DELETE FROM ExperimentImages WHERE ShownCount = 100;

/* See all of experiemental images that have been shown 100 times */

SELECT FROM ExperimentImages WHERE ShownCount = 100;

/* Query to find all images that have been shown 100 or more times and

that have a user entered label that has been entered as the same text

95 or more of the times that the image was shown. The query prints out

the image ID number, Image filename, the number of times the image was

shown, the name that the user entered for the image file, and the

number of times that the user entered that specific name. */

SELECT ExperimentImages.ImageID,

ExperimentImages.ImageFileName,ExperimentImages.ShownCount,

 UserEnteredLabels.UserEnteredLabel,

UserEnteredLabels.TimesEntered

FROM ExperimentImages JOIN UserEnteredLabels

WHERE ExperimentImages.ImageID = UserEnteredLabels.ImageID AND

 ExperimentImages.ShownCount >= 100 AND

UserEnteredLabels.TimesEntered >= 95;

/* Insert the experiment images with a label with percent confidence

over 95 into control images. Basically, take a 'snap shot' of

experiment image as it is moved. */

INSERT INTO Control_Images (

 SELECT ExperimentImages.ImageID, ExperimentImages.ImageFileName,

 ExperimentImages.TopLeftX, ExperimentImages.TopLeftY,

10

 ExperimentImages.Height, ExperimentImages.Width,

 UserEnteredLabels.UserEnteredLabel, 95, NOW()

 FROM ExperimentImages JOIN UserEnteredLabels

 WHERE ExperimentImages.ImageID = UserEnteredLabels.ImageID AND

 ExperimentImages.ShownCount >= 100 AND

UserEnteredLabels.TimesEntered >= 95);

/* Add one to the 'TimesEntered' attribute of a specific label example

*/

UPDATE UserEnteredLabels SET TimesEntered = TimesEntered + 1 WHERE

ImageID = 4;

/* Add 1 to the 'ShownCount' for an experimental image example */

UPDATE ExperimentImages SET ShownCount = ShownCount + 1 WHERE ImageID

= 1;

/* See if a control image with a specified Label and ImageID exists

example */

SELECT * FROM ControlImages WHERE ImageLabel = "twix" AND ImageID =

100;

/* Get a random row from the ExperimentImages table */

SELECT * FROM ExperimentImages ORDER BY RAND() LIMIT 1;

Database Java Class
After we created the MySQL code, we integrated some of the commands into a java class. The following

is a description of the functionality of the Database java class ‘Database.java’. The class contains

methods to:

1. Connect to the GROZI database.

2. Get a random control image or/and experiment image. If an experiment image is generated, its

'ShownCount' is increased.

3. Allow a user to see if a label is already in the ‘UserEnteredLabels’ database table. If it is, the

label's 'TimesEntered' attribute is increased by one. If it is not in the table, it gets added.

4. The user can check if a control image with a given ‘ImageID’ and label exists. This is so that we

can check to see if the user enters the correct control image label when working with the UI.

Below is a sample run of the Database.java class on the dummy data in the database. For the queries,

dummy information is fed to the function calls from main. Comments explaining what the outputs mean

are colored red.

11

* Execution of the program starts by telling you whether the

connection to the database is successful

Database connection established

* When a random image is queried, that image‟s „TimesShown‟ attribute

is increased by 1, so that we know how many times an image has been

shown in the UI.

Incrementing Random Experiment Image with ImageID = 6's 'TimesShown'

attribute...

* These are the attributes of the random experiment image that is

generated

RANDOM EXPERIMENT IMAGE ATTRIBUTES

ImageID: 6

ImageFileName: file2.jpg

TopLeftX: 0

TopLeftY: 0

Height: 20

Width: 30

Image Type: 1

* These are the attributes of the random control image that is

generated

RANDOM CONTROL IMAGE ATTRIBUTES

ImageID: 100

ImageFileName: file100.jpg

TopLeftX: 0

TopLeftY: 0

Height: 10

Width: 50

Image Type: 0

ImageLabel: twix

PercentConfidence: 95

Time Stamp: 2009-03-13 18:28:59.0

* This was the result returned when we entered ImageID = 4 (the

ImageID that links the label to the experiment image that it is the

label for) and ImageLabel = „Tide‟ into the function call that figures

out if a Label exists in the UserEnteredLabels table. The result is

valid, as there was a label in the table with these attributes. The

function increases the times the label was entered for the specific

experiment image also.

* In main, we also do a test run with an ImageID and ImageLabel that

are NOT in the table. When this occurs, the program successfully adds

12

the new label to the table and initializes the times it has been

entered to 1.

Label Tide Exists...

Incrementing 'TimesEntered' attribute...

* The two outputs below are tests done in main that call the function

to check if there is an entry in the ControlImages table for the

ImageID and ImageLabel fed to the function. The first is correct, as

there was an item with ImageID = 100 and ImageLabel = „txix‟ in the

ControlImages table. „True‟ displayed below it is the Boolean value

returned to main from the function call. The second call to the

function was given information for an image that was not in the table.

It correctly prints that the item does not exist in the ControlImages

table and Boolean False is returned to main and displayed.

Control Image with ImageID = 100 and ImageLabel = twix Exists!

true

Control Image with ImageID = 105 and ImageLabel = NotAnImage DOES NOT

Exist.

False

When the java code gets a random image from the database, it returns all the image attributes. The

attributes are going to be used by the UI team in the future. The image attributes will describe the

image’s filename and bounding box information that needs to be displayed. Once the user enters text

for an image, the UI team can evaluate what the user entered to check if it exists as a label in the table.

They can do this by using the Database class. The code will create a new label if the label that the user

entered does not exist. The UI team will also be able to use the code to figure out if the user enters the

correct label for the control image when they enter text into with the UI.

13

Entity-Relationship Model

Figure 2: Entity-Relationship Model

LEGEND: The “Associates Labels” is the relationship that links the tables together. The “1” and the “*”

mean that there is one experiment image linked to many User-Entered Labels, and so on. The ellipses

correspond to attributes, while the rectangles represent tables.

Experiment Images

1. ImageFileName: This is a foreign key that relates the image to the Control Images table, and it

describes the location of the picture (i.e. image5.jpg).

2. ShownCount : This is the number of times the image, or ImageFileName is shown in the UI for

labeling.

3. Width, Height, TopLeftX, TopLeftY: These are the coordinates of the bounding box. The

bounding box is given along with the ImageFileName.

14

4. ImageID: The primary key of this table. This ID contains the information that is created in the

User-Entered Labels table. In other words, the ImageID is what relates each table. Each

ImageFileName can have several ImageID’s depending on how many different ways the image

has been labeled by users.

User Entered Labels

1. LabelID: The primary key associated with this table. There are several LabelIDs for each ImageID.

Each LabelID keeps track of the UserEnteredLabel. For example, someone could label one

ImageID as “twix” and someone else could label the same ImageID as “tix”, so these would both

get different LabelIDs.

2. UserEnteredLabel: This is the text that the user enters to label the image.

3. ImageID: This is the table in which ImageID is first created, and then sent to Experiment Images

or Control Images. It contains the UserEnteredLabel and LabelID. There are several LabelID for

each ImageID.

4. TimesEntered : Each LabelID is associated with how many times a UserEnteredLabel. The

TimesEntered keeps track of how many times the exact filename and text for the filename has

been inputted. So if there was a twix bar and three people labeled it “twix” and 2 people labeled

it “tix”, each of those labels would get its own LabelID with a count of 3 or 2, respectively.

Control Images

1. ImageFileName – This is the same as the ImageFileName in Experiment Images. When an image

is moved from Experiment to Control, it will still contain the history it had in Experiment.

2. ImageID: The primary key in this table. This contains the same information that Experiment

Images contained except that it has a final ImageLabel, Coordinates, Perfect Confidence,

ImageLabel associated with it. Each ImageFileName can have several ImageID associated with it.

There may be several ImageID because we might move the same ImageFileName to Control

Images if more than one ImageID has reached the threshold.

3. TS: This is a timestamp assigned to when the experiment image has been moved to Control

Images.

4. ImageLabel: This is text users have entered with the highest percent confidence. In other words,

it is the “UserEnteredLabel” that achieved the highest confidence.

15

5. PercentConfidence: We will use this value for how many times an image needs to be displayed

before its labels are evaluated. Once at this threshold, we can use the number of times it was

shown, ShownCount, to evaluate the PercentConfidence of the labels for the image

6. Width, Height, TopLeftX, TopLeftY: the same coordinates associated with ImageFileName in

each table.

Future Work
If next quarter’s focus is also on the Soylent Grid portion of the GroZi project, then the members of the

database team should focus on the following:

 Replace the existing dummy data with all the GroZi 120 images.

 Integrate JAVA code with the User Interface team so that the fused system can perform the

following functions: (1) call attributes to such as the experiment and control images from the

database, (2) display those images, (3) receive the typed text for the images and send that back

into the database

 Possibly change to a system in which user draws box around a given text.

 Test the system on a small scale at first, such as within the group on the Soylent Grid website.

 Test the system on a larger scale: WEBCT, possibly Amazon in the future?

 Label thousands of grocery store images with the help of millions of internet users.

 Integrate system with camera/device capable of image recognition for the final goal of being

able to provide item information to the Blind.

16

User Interface

The role of the User Interface team as a subset of the GroZi team is to implement a user interface for

Soylent Grid. This interface will be user-friendly, and modeled after the reCAPTCHA user interface, to

make the labeling task simple and quick for the user.

To view the current user interface for Soylent Grid, see this website-development server:

http://grozi.freeclinicproject.org:8180/SoylentGrid/

 For the sake of efficiency this quarter, the team has assumed that bounding boxes will be pre-provided

with each image. To program the interface, Java was used with an integrated development

environment, Eclipse. Eclipse not only compiles and runs the script efficiently, but it also accesses the

libraries more easily. In addition to this, Google Web Toolkit was used to build the JavaScript. Thanks to

Subversion, the team was able to simultaneously work on pieces of the code and update their latest

work for the others to build on.

Problems and Solutions
Soylent Grid’s user interface (UI) has seen many modifications over the past ten weeks. The images

below depict the user interface’s appearance on January 5th, 2009 and its appearance by the end of the

quarter, March 13th, 2009. Beneath the screen shots is a table outlining all the changes made to the UI

by the conclusion of Winter quarter 2009.

http://grozi.freeclinicproject.org:8180/SoylentGrid/

17

Table 1: Changes made to User Interface in Winter 2009

BEFORE: January 5, 2009 AFTER: March 13, 2009

 White color scheme UCSD blue and gold color scheme

 Widget changed sizes according to the largest

image

 Widget has a fixed size of 300 by 150 pixels

 Images have a fixed size of 150 by 150

pixels

 Rectangle and polygon tools displayed, as well as a

“choose tool” button
 These tools have been disabled

 Only one image displayed
 Two images now display—an experiment

image and a control image

 Image not centered horizontally or vertically Image centered horizontally

 Images were subject to distortion
 Images are no longer distorted- aspect ratio

is fixed

 Inconsistent refresh time (3-7 seconds) due to

difference in image sizes

 Time to refresh has been reduced (3-5

seconds) due to fixed image sizes

In addition, the Winter 2009 UI team now has an updated website:

http://ties.ucsd.edu/projects/gsa/index_files/page0007.htm

Approach
This quarter, we worked in WiW_Task.java, Image.java, and SoylentGrid.html.

WiW_Task.java: Displays a picture with a toolbox.

Image.java: Contains a new Image class that stores the necessary data information about the image: the

path (the file path name where the image is located), the height, the width, and the imgType

(distinguishes between control and experimental image).

 SoylentGrid.html: Uses Cascading-Styles Sheet to alter to visual aspects of the UI, such as the

background color and size of the buttons.

18

How to create styles to alter the visual aspects of the UI
To add a background color, it is necessary to create a style definition in SoylentGrid.html first, and then

call it from the Wiw_Task.java document. Several examples are shown on the table below that explains

how to create a style:

Table 2: Creating style in html and java

SoylentGrid.html code.

Creations of style:
WiW_Task.java code to implement the style:

.gwl-button {

 width: 55px;

 height: 45 px;

 text-align: center;

 border: 1px solid #FFFFFF;

 background: #191970;

 padding: 3px;

 color: rgb(255,255,255);

}

refresh.setStyleName("gwl-button");
//”refresh” is the reference variable to an

instance of a button class. We then call

the method setStyleName on this

instance.

.gwl-background {

 width: 197px;

 text-align: center;

 background: #FDF2CC;

 padding: 2px;

}

RootPanel.get().setStyleName("gwl-

background"); //sets the style “gwl-

background” to the entire panel.

.gwl-simpleCalendar {

 width: 197px;

 text-align: center;

 background: #FFD700;

 padding: 2px;

}

main.setStyleName("gwl-simpleCalendar");

//sets the style “gwl-simpleCalendar” to

the grid.

img {

 display: block;

 text-align: center;

 margin-left: auto;

 margin-right: auto;

 margin-top: auto;

 margin-bottom: auto;

}

//the code on the left written in

SoylentGrid.html centers the images on the

grid.

The main goal for the User Interface this quarter was to create a more visually appealing interface that is

modeled after reCAPTCHA, alter the code so that two images now display – an experimental and a

control image, and create a fixed size grid so the grid does not resize with each refresh.

19

Figure 3: Old User Interface -- Output from WiW_Task.java

As shown in Figure 3 above, the old user interface was only able to incorporate one image into the

widget. This was because the code in WiW_Task.java was fixed in such a way that one function calls

another, which calls another, until the final image is displayed. Hence, even when getRandomImg() was

called again in an attempt to get the second image, it failed. This happens because after fetching the

first image, when the second image is fetched, all the data of the first image is overwritten by the data

in the second image.

How an image is fetched and displayed in the UI

Call Hierarchy to get an image:

 WiW_Task constructor getFiles()

 getFiles() Calls getRandomImg()

getRandomImg() sets the width and height of the image, Calls changeImg()

 changeImg() sets the width/height of image in the drawing canvas

 Return from calls into getFiles() Call displayInterface()

To remedy this problem, a new Image class is created:

20

The Image class stores the information of an image. It has one constructor which initializes all passed in

parameters to the data fields of the image.

 Path: The path name of where the image is located.

 Height: The height of the image.

 Width: The width of the image.

 ImgType: A flag to distinguish between control and experimental images. If imgType = 0, the

image is a control; otherwise, if imgType = 1, the image is experimental.

To accommodate the new Image class, the following code was also added or changed:

 Two new Image objects are created at the beginning of file – ‘image1’ and ‘image2’.

In getFiles(): [line 271]

image1 = getRandomImg(1); /* experimental image */

image2 = getRandomImg(0); /* control image */

displayInterface(image1, image2);

Image1 and image2 calls getRandomImg() and passes in a hardcoded number to generate, either 1 for

an experimental image, or 0 for a control image. This is just temporary to distinguish between the two

images. In the future, there will be a randomizer function that automatically generates either a control

or experimental image for image1 and use the opposite for image2.

In getRandomImg(int): [line 308]

String curImages = (String)files.get(random);

The file is accessed from this line of code to get the path name of where the image is located. The path

name is stored into a variable ‘curImages’ and then passed into the Image constructor below so it is

stored into the image’s path data field.

Image myimage = new Image(curImages, width, height, conExpImage);

 getImage(myimage);

 return myimage;

getRandomImg() is adjusted so it can fetch multiple images and store them in different locations so that

the second image can be created without overwriting the data of the first image. This is done by

allowing getRandomImg to return an image object. This function creates a new image object with the

default constructor and returns the image back to getFiles() after the other functions set its width,

height, and so on.

In getImage(Image): [line 317]

int[] temp = new int[2];

temp = (int[]) result;

21

int curWidth = temp[0];

int curHeight = temp[1];

currentImage.width = curWidth;

currentImage.height = curHeight;

getImage() is also adjusted so it takes in an Image object. It gets the width and height of the image and

sets the width and height data field of the Image object so it can be accessed later on in

displayInterface().

In changeImg(Image): [line 354]

The Document Object Model (DOM) is a platform- and language-neutral interface that allows programs

and scripts to dynamically access and update the content, structure and style of HTML, XML and related

formats. DOM is the way JavaScript sees the containing HTML page and browser state.

 Element

 e1 = DOM.getElementById("draw"),

 e2 = DOM.getElementById("temp"),

 e3 = DOM.getElementById("Picture"),

 e4 = DOM.getElementById("draw2"),

 e5 = DOM.getElementById("Picture2");

changeImg() sets the width and height of the picture in the drawing canvas. Initially, changeImg() only

had Elements e1 an e3, which is the draw area for the image, so it wasn’t able to accommodate two

images. The draw area of the first was constantly being replaced by the second. To solve this problem, a

second draw area was created, Element e4 and e5, for the second picture.

 String curImage = currentImage.path;

 int curWidth = currentImage.width;

 int curHeight = currentImage.height;

 int expConImage = currentImage.imgType;

At the beginning of changeImg(), the Image object’s data fields are accessed to obtain the width, height,

and imgType (control/experimental). It then checks whether the image is either a control or an

experiment and sets the corresponding element to that particular image’s height and width.

 DOM.setElementProperty(e2, "width", Integer.toString(curWidth));

 DOM.setElementProperty(e2, "height", Integer.toString(curHeight));

 //java.util.Random

 if (expConImage == 0) {

 DOM.setElementProperty(e1, "width", Integer.toString(curWidth));

 DOM.setElementProperty(e1, "height",

22

 Integer.toString(curHeight));

 DOM.setElementProperty(e3, "width", Integer.toString(curWidth));

 DOM.setElementProperty(e3, "height",

 Integer.toString(curHeight));

 DOM.setImgSrc(e3, "Pictures/WiW/"+ curImage);

 }

 if (expConImage == 1) {

 DOM.setImgSrc(e5, "Pictures/WiW/" + curImage);

 DOM.setElementProperty(e4, "width", Integer.toString(curWidth));

 DOM.setElementProperty(e4, "height",

 Integer.toString(curHeight));

 DOM.setElementProperty(e5, "width", Integer.toString(curWidth));

 DOM.setElementProperty(e5, "height",

Integer.toString(curHeight));

 }

In displayInterface(): [line 60] (Putting it All Together)

Finally, once the draw area for each image is set, the function calls return back to getFiles() and

getFiles() calls displayInterface(), which sets up the final UI. Now that the data fields of both images are

set, these data fields are accessed at the beginning of displayInterface():

 String curImage = myImage1.path;

 int curWidth = myImage1.width;

 int curHeight = myImage1.height;

 String curImage2 = myImage2.path;

 int curWidth2 = myImage2.width;

 int curHeight2 = myImage2.height;

Since we now have two draw areas, the second drawArea is also initialized for the second image (The

JsGraphicPanel is made to draw on and display a picture):

final JsGraphicsPanel drawArea = new JsGraphicsPanel("draw");

 final JsGraphicsPanel drawArea2 = new JsGraphicsPanel("draw2");

A new clickArea must also be created for the second image.

 final FocusPanel clickArea2 = new FocusPanel(drawArea2);

 clickArea2.setSize(Integer.toString(curWidth2) + "px",

 Integer.toString(curHeight2) + "px");

23

Furthermore, the buttons were rearranged to create a more visually appealing UI:

This displays the first image in the grid:

 VerticalPanel panel = new VerticalPanel();

 panel.add(clickArea);

 panel.setSize(Integer.toString(curWidth) + "px",

 Integer.toString(curHeight) + "px");

This code was added to display the second image in the grid:

 VerticalPanel toolPanel = new VerticalPanel();

 toolPanel.add(clickArea2);

 toolPanel.setSize(Integer.toString(curWidth2) + "px",

 Integer.toString(curHeight2) + "px");

 The buttons were moved to the last column and first row of the grid:

 VerticalPanel toolPanel1 = new VerticalPanel();

 toolPanel1.add(refresh);

 toolPanel1.add(submit);

 toolPanel1.add(help);

These lines set the first and second textbox in the corresponding grid:

 HorizontalPanel buttonPanel = new HorizontalPanel();

 buttonPanel.add(tb);

 HorizontalPanel buttonPanel2 = new HorizontalPanel();

 buttonPanel2.add(tb2);

The last panel currently contains nothing but in the future, we hope to move the submit button here.
 HorizontalPanel buttonPanel3 = new HorizontalPanel();

 Grid main = new Grid(2,3);

 main.setBorderWidth(3);

 main.setWidget(0, 0, panel);

 main.setWidget(1, 0, buttonPanel);

 main.setWidget(1, 1, buttonPanel2);

 main.setWidget(1, 2, buttonPanel3);

 main.setWidget(0, 1, toolPanel);

 main.setWidget(0, 2, toolPanel1);

 main.setStyleName("gwl-simpleCalendar");

A rough draft of how the grid is structured is shown below:

24

(0,0)

FIRST

IMAGE

(0,1)

SECOND

IMAGE

(0,2)

REFRESH

SUBMIT

HELP

Buttons

(1,0)

TEXTBOX

(1,1)

TEXTBOX

(1,2)

NULL

With all of these changes in place, Soylent Grid is finally able to display the second image. However, to

keep this behavior consistent even after the “Refresh” button is triggered, the following code was added

to the code that triggers the refresh button on line 169:

image1 = getRandomImg(1); /* experimental image */

image2 = getRandomImg(0); /* control image */

displayInterface(image1, image2);

…and this is how both images are displayed.

Fixing grid size and Aspect Ratio of pictures:
Now that the second image appears in the UI, there is a problem with the grid size. Since the picture in

the directory the UI is fetching from consists of pictures in many different sizes and shapes, every time a

new image is reloaded, the large picture would resize the grid. This behavior is undesirable because it

creates inconsistent user experiences and different load times depending on how large the image is.

The GroZi team agreed for the fixed-grid to be 300 by 150 pixels so the widget is small enough to be

incorporated into other websites.

These changes were integrated into the WiW_Tool.java in the following ways:

New static variables were created at the beginning of this class to hardcode the values 150x150 into the

grid:
 public static final int width = 150;

public static final int height = 150;

In getRandomImg(), these two values are passed into the Image constructor to automatically set the

width and height to the value 150:

 Image myimage = new Image(curImages, width, height, conExpImage);

25

After this change was implemented, the Soylent Grid interface remained a fixed size no matter the size

of the image. However, it created a new problem; images that did not fit the grid ratio of the draw area

were stretched and distorted. Of the images in the database, the Gatorade bottle was the most

distorted. See figure 4 below for an example:

Figure 4: Distorted images

Fixing the aspect ratio of the images only requires a simple check. After the image’s width and height is

obtained from getImage(), inside changeImg() on line 366 the following checks were made:
 float ratio = 0;

 if (curWidth > curHeight)

 ratio = ((float)width / (float)curWidth);

 else

 ratio = ((float)height / (float)curHeight);

 curWidth = Math.round(curWidth * ratio);

 curHeight = Math.round(curHeight * ratio);

There is a condition to check which side of the image is greatest (either the width or the height). Then

the largest side of the image is taken and scaled down to fit the 300x150 grid width. In doing so, the

browser also automatically resizes the shorter side of the image. The resulting change creates a more

visually appealing picture as shown in Figure 5. As shown, both the Snyder’s Pretzels and (especially) the

Gatorade bottle look proportionate after the change:

26

Figure 5: UI with Aspect Ratio fix

Although the aspect ratio has been fixed, the key thing to keep in mind is the image scaling is still done

by the browser. Therefore, with each refresh, the full image still reloads. This is a problem that the

future GroZi team may work on. GroZi’s user interface has come a long way this quarter but there are

still more changes on the horizon.

Future Plans for UI:

 Integrate LightboxJS (http://www.huddletogether.com/projects/lightbox/) into the UI so users

can easily enlarge the images.

 Integrate the Database with the UI so the UI can fetch an image from the Database, and so the

Database may retrieve a submitted input from the user.

 Add a randomizer to the UI so experimental and control images are randomized.

 Create smaller, pictorial buttons (i.e. replace the Submit button with a return arrow, replace the

help button with a “?”) and move the submit button to the bottom right panel.

 Add hover text. (i.e. When hovering over refresh, it would say “get a new image.” When

hovering over Help, it would say “need help?” When hovering over Submit, it would say “submit

your answer.”).

 Create and incorporate a logo for Soylent Grid.

http://www.huddletogether.com/projects/lightbox/

27

Usability

What is Usability Team
Soylent Grid consists of a User Interface which displays grocery images and records user inputs. These

user inputs are then sent to and stored in the database, where the inputs are labeled as either control or

experiment. In order for the Database and the User Interface Teams to successfully accomplish these

tasks, the teams put in long, difficult hours of programming work. While the teams are programming,

issues such as “user friendliness” can seem unimportant and can be very easily overlooked. Although

these issues seem small, they are equally as important to create a successful Soylent Grid experience for

our valuable users. The Usability Team was created so that these issues do not get overlooked.

Aim of Usability Team
Soylent Grid is powered by its users. Because Soylent Grid depends on its users to be the power behind

the labeling of the Grozi database, Soylent Grid must not upset or chase the user away. Thus, the

Usability Team worked with both the User Interface Team and the Database Team to ensure that the

Soylent Grid widget remained “friendly” to its users. The Usability Team did most of its work with the UI

team. The UI team created the widget, and the Usability team gave feedback and suggestions about

how to improve the design. The Usability Team basically designed the layout of the widget, selecting

necessary buttons and features. The Usability Team also worked with the database team with

confidence levels. These confidence levels were what decided if an image could be considered a control

image. In summary, the Usability Team did study and made suggestions about any possible problem

that could possibly make the user unhappy.

Recaptcha Model
Recaptcha is a parent project, very similar to Soylent Grid. In Recaptcha, two captchas are displayed for

labeling. The captchas are used to block spam bots from accessing websites. However, Recaptcha

displays one captcha with a known correct answer (control), and one captcha in which the correct

answer is not known (experiment). The experiment captchas are actually words from books that need

to be digitized. When users successfully enter the control answer correct, the experiment answer is

assumed right and the responses are stored in the database. Experiment words are digitized when they

reach a certain confidence in which they are considered control words. In summary, instead of simply

paying people to manually label and digitize these books, Recaptcha found a way to get free labor from

the mass computing power available on the net. Soylent Grid is modeled after the Recaptcha idea; we

instead display grocery images to be labeled for the GroZi project.

28

Problems and Solutions

Previous quarter UI

Figure 6: User Interface from Fall 08

I. Labeling

Four options were considered for product labeling. If there was infinite time and supply of

support, the bounding box should outline each letter according to its individual curve. The

second option is to have a rectangle around the whole word. The third option is to draw the

bounding box around the product (see Figure 6), and the user will be prompted to type in

the words they see in the region. Finally, the user interface can have no bounding box and

users are free to type in anything they see.

II. Bounding Box (Assumption of given bounding box)

The bounding box should hold only one word.

III. What should users type?

The ideal situation would be to get the user to label every word on the product. This will

accelerate the amount of time needed for image labeling. However, this would require too

much work from the user. Therefore, while this is ideal, it is not realistic. One option would

be to give the user a word, and ask them to draw a bounding box around the word provided.

IV. Polygonal tools

The “Select Polygon Tool” seen in the old interface should be eliminated. It is too

complicated for users to comprehend easily.

V. Distortion of image/Resizing

To ensure that Soylent Grid images are associated with a fixed grid, images should be

stretched to Soylent Grid margins while maintaining ratio size of height and width. This

should not pose a problem with blurry pictures as the extension is not extreme.

VI. Loading time Soylent Grid

Assuming a good connection speed, the load time should last no longer than three to five

seconds. Waiting an excessive amount of time creates user frustration.

The difference in image sizes, grid sizes and loading time creates an inconsistency in user

experience. If it is possible, the team should aim to quantify the longest loading time. Here,

29

the Usability team considered two possibilities – discard, keep or resize the image. Our team

concluded that the image should be kept for statistical purposes, but also resized to reduce

the average loading time. In fact, it will be excellent if Soylent Grid can someday detect

connection speed in order to give users with slow connections small images and the like for

fast users.

Current UI

Figure 7: User interface designed in Winter 09

I. Zooming option – Lightbox (include code)

Since the widget is modeled after the ReCAPTCHA interface, the images might sometimes be

too small for the texts to be identifiable. To solve this issue, we implemented the Lightbox JS

feature so the users can click on the images to get a larger view that overlays the current

web page.

Lightbox JS using html:
<script type="text/javascript" src="lightbox.js"></script>

For animated text “Loading…” and “Close”, add the following lines to the top of lightbox.js
var loadingImage = 'loading.gif';

var closeButton = 'close.gif';

File needed: lightbox.js, loading.gif, close.gif

Lightbox JS using CSS:
#lightbox{

 background-color:#eee;

 padding: 10px;

 border-bottom: 2px solid #666;

 border-right: 2px solid #666;

 }

#lightboxDetails{

30

 font-size: 0.8em;

 padding-top: 0.4em;

 }

#lightboxCaption{ float: left; }

#keyboardMsg{ float: right; }

#lightbox img{ border: none; }

#overlay img{ border: none; }

 #overlay{ background-image: url(overlay.png); }

* html #overlay{

 background-color: #000;

 back\ground-color: transparent;

 background-image: url(blank.gif);

 filter:

progid:DXImageTransform.Microsoft.AlphaImageLoader(src="overlay.png"

, sizingMethod="scale");

 }

Files needed: lightbox.css, overlay.png

Files can be downloaded from http://www.huddletogether.com/projects/lightbox/

II. Picture icons instead of text (Readjust second column)

More and more internet interfaces now choose picture icons over text because pictures are

easier for human eyes to register. People are more willing to read pictures than texts.

III. Hover text

To reduce excessive texts on the interface and still provide enough information for users to

use the widget without confusion, we added hover text for the icon buttons. The buttons

now have hover texts which display the purpose of each button.

IV. Double Clicks on Image

Double clicks on the images will not have any affect because internet users are used to this

effect. We do not want to introduce features that users are not familiar with because they

might cause confusion.

V. Right clicking

The affect that right clicks have on the images will depend on the web browser that the user

is using.

VI. Differences in control/experiment size

Because the images from the control and experiment sets are placed side-by-side, we want

to keep the images the same size to avoid stretching or shrinking the interface, which might

frustrates the webmasters and the users. To resolve this issue, the size of the interface will

be fixed, and images of different sizes will be stretched or shrunk to the interface size while

maintaining its aspect ratio.

VII. Which information is significant?

31

Although the brand for the image product is important, texts containing information such as

flavor and quantity of sugar contained are just as important. Thus, there will be bounding

boxes for different texts for the same image.

VIII. Refresh Images (2 images simultaneously)

When the “refresh” button is clicked, both images will be refreshed to decrease the chance

for spam bots to determine which image is the control image and which image is the

experiment image.

Future Reference

Coloured Bounding Boxes

In cases where bounding boxes concurrently contain the brand name and small words (e.g. Tic Tac brand

with Wintergreen flavor), either word should be taken as correct. To eliminate the bias of results, the

future User Interface team might consider having color-coded bounding boxes. For example, the

bounding box surrounding “Tic Tac” is green, but the bounding box containing “Wintergreen” is blue.

This way, we can instruct the user to only type in the word in the color specific box.

Control Images

Appropriate control images need to be shown so not to overly frustrate users who cannot decipher the

Soylent Grid images. Figure 8 and 9 are some examples of what the control image should and should

NOT look like:

Figure 8: Appropriate Control Images

Figure 9: Inappropriate Control Images

32

User Interface

The usability team has come up with a draft version of what the next User Interface should look like:

Figure 10: Draft version of Future UI

Traffic Generation
While the most important aspect of usability to focus on is the actual experience of the user as he/she

encounters Soylent Grid, one can’t help but question “Where exactly are users going to run into Soylent

Grid?” With that in mind, the Usability team set out to find potential traffic that could be generated.

Listed below are some of the mediums and locations that could heavily speed up the progress of the

project.

I. ACS – With the amount of students at UCSD checking their email every day, a simple task of

labeling two product images shouldn’t be too much of a hassle. However, because the rate at

which students log in (that is to say, one student most likely logs in at least 5 times a day),

requesting the student to go through Soylent Grid for every login is unreasonable. Therefore,

while ACS is a very promising traffic location, its harms outweigh its benefits.

II. WebCT – WebCT is a product owned by BlackBoard, with licenses purchased by UCSD, that

serves as an online blackboard for UCSD courses. Essentially, it is a way to achieve electronic

learning in a user-friendly interface. While it doesn’t generate as much traffic as ACS email

services, its statistics are favorable. Currently at UCSD, there are 60 categories of classes with

each containing on average 5 courses per category. Each class accounts for about 100 students.

In other words, there are about 300 courses being visited daily by about 3000 students. With its

encouraging volume, and low rate of login (about one login per day), employing Soylent Grid

with WebCT as a host could possibly create large traffic with little burden to UCSD students.

Currently, the usability team is working to find out licensing costs and the requirements to

qualify WebCT to consider Soylent Grid as a partner. While it is narrowed to just UCSD at this

point, we hope in time that WebCT will employ Soylent Grid among other universities as well.

III. GradeSource – Written by UCSD professor Gary Gillespie, it is an Instructor course management

tool with student viewable web page reports. The software is currently free for UCSD professors

and is widely used by professors in Computer Science and Engineering department. Students will

be given secret numbers so they can check their grades any time during the quarter without

33

revealing their grades to other students. Although the traffic it generates can be significant,

students are not requested to log in when they check their grades, thus it will not generate as

much traffic as software such as WebCT.

IV. Public computers at UCSD - The numerous computers at Geisel Library and Price Center provide

access to internet for UCSD students. What sets this medium from the rest is that students only

use the computers for a short amount of time. In fact since the duration of usage is so short and

quick, many students line up at the library for a quick-and-go computer use. By deploying

Soylent Grid on these computers, it serves as a quick and reliable source of labeling.

V. Tritonlink—the student profile website that houses information to nearly every aspect of UCSD.

With 24,000 students enrolled per year and at least one login per day by every student,

tritonlink proves itself very well worthy of traffic generation. However, as ideal as it would be to

employ Soylent Grid in a high volume website as Tritonlink, it is probably best to focus on

smaller locations and secure a position in these positions. By introducing Soylent Grid and

slowly achieving recognition for its uses across the web, then perhaps the user interface could

be launched into Tritonlink without giving UCSD students a surprise to what Soylent Grid is.

Confidence Level
After deliberating over confidence level models we should employ to move experiment images to

control images, the Usability team decided on three concurrent strategies:

 If experiment image is recorded with seven consecutive labels, move experiment image to

control.

 If experiment image is recorded with three consecutive labels, but fails to achieve seven

consecutive labels, perform a check that 65% of the labels are identical with a minimum 20

count vote. If 65% are identical, move to control; else, continue with labels until 65%

confidence is achieved.

 If neither of the above criteria is fulfilled, run a minimum 50 votes. If 80% of labels are

identical, pass the word; else, continue the check.

Our decision is based on the Recaptcha confidence level.

Help File
A help file is essential in ensuring that users know exactly what they are meant to do, and also, how they

should accomplish it. Therefore, the Usability team has come up with a specific help file that acts as a

pop up when users click on the “Need Help” icon. A draft version of the file looks like this:

34

Instructions

Two product images are displayed, each with a

corresponding text box. Within each product

image, word(s) are contained in a colored box.

Please enter these word(s) into the text box

below that image. Doing so helps prevent

automated spam bots from abusing this

service.

If you are not sure what the words are, click on

the image for a larger view. If you are still

unsure, either enter your best guess or click

the refresh button on the right side of the

interface for a new pair of product images.

Still need help? Contact us. (Link to

troubleshooting survey)

Soylent Grid Vision

By entering the words into the boxes, you are

also helping to label grocery product images.

Blind people will use these labeled images to

create a shopping list, which will be used along

with GroZi’s Grocery Shopping Assistant for the

Blind. This project will allow blind people to

shop for groceries independently. With your

help, this goal can be accomplished.

Learn more about GroZi? (Link directing user to

GroZi website)

Learn more about Soylent Grid? (Link directing

user to Soylent Grid website)

Possible survey questions for the troubleshooting survey includes: (Modeled after reCAPTCHA)

 There are no words bounded by colored boxes.

 There is no colored box.

 The product image is too small or distorted.

 It says I'm wrong every time I enter the words, but I'm sure I got them right.

 The words are too hard to read.

 Something else (please describe below).

 Text box

 Other Comments?

 Text box

Summary
Graphically sophisticated designs of the Soylent Grid underpinned by leading-edge technologies are but

digital art, if the users cannot navigate or use the interface. The Usability team functions to ensure that

the Soylent Grid interface is efficient, effective and satisfying. In this report, we have outlined

parameters that need to be considered for the deployment of Soylent Grid. These include problems and

solutions to the Fall 08 and Winter 09 User Interface, traffic generation options, confidence level for the

database and the Soylent Grid User Help File.

35

References

1. Valid Web Designs. 17 March 2009.

<http://validwebdesigns.com/glossary/#d>.

2. Recaptcha Website:

http://www.recaptcha.com

3. Fall 08 GroZi Final Report

http://grozi.calit2.net/files/TIESGroZiFa08.pdf

http://grozi.calit2.net/files/TIESGroZiFa08.pdf

